3.11 Higer Order Linear Homogeneous Differential Equations

Everything is mostly the same only now we have

$$\frac{d^{n}y}{dt^{n}} + p_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{1}(t)\frac{dy}{dt} + p_{0}(t)y = g(t)$$

Existence and Uniqueness:

Let $p_{n-1}(t), \dots, p_1(t), p_0(t)y$ and g(t) be continuous functions defined on the interval a < t < b, and let t_0 be in (a, b). Then the initial value problem

$$\frac{d^{n}y}{dt^{n}} + p_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{1}(t)\frac{dy}{dt} + p_{0}(t)y = g(t)$$

$$y(t_{o}) = y_{o}, y'(t_{o}) = y_{o}', y''(t_{o}) = y_{o}'', \dots, y^{(n-1)}(t_{o}) = y_{o}^{(n-1)}$$

has a unique solution defined on the entire interval (a, b).

We need n initial conditions to solve an IVP here. As in the 2^{nd} order case we will find a fundamental set of solutions to the homogeneous equation. We can still determine if we have a fundamental set by calculating the Wronskian

$$W = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

If $W \neq 0$ then $y_1, y_2, \dots y_n$ form a fundamental set of solutions for

$$\frac{d^n y}{dt^n} + p_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + p_1(t) \frac{dy}{dt} + p_0(t) y = 0.$$

For the nonhomogeneous case there is still only one particular solution y_p and the total solution is $Y = y_h + y_p$

Theorem 3.6 (Abel's Theorem): Let $y_1(t)$, $y_2(t)$, $\cdots y_n(t)$ be n solutions of the homogenous linear differential equation

$$\frac{d^n y}{dt^n} + p_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + p_1(t) \frac{dy}{dt} + p_0(t) y = 0, \quad a < t < b,$$

Where $p_0(t)$, $p_1(t)$, $\cdots p_{n-1}(t)$ are continuous on (a, b). Let W(t) be the Wronskian of $y_1(t)$, $y_2(t)$, $\cdots y_n(t)$. If t_0 is any point in (a, b), then

$$W(t) = W(t_0)e^{-\int_{t_0}^t p_{n-1}(s)ds}, \quad a < t < b.$$

Why do we care about Theorem 3.6? Because it says that if the Wronskian is not zero at **any** point of (a, b) then it is not zero at **every** point of (a, b).

Linear Independence

<u>Definition</u>: If $ax_1 + bx_2 = 0$ where a and b are not both zero then x_1 and x_2 are said to be <u>Linearly Dependent</u>. x_1 and x_2 are <u>Linearly Independent</u> otherwise.

The idea of linear independence applies to both functions and vectors. For functions we talk about linear independence on an interval.

If $ax_1(t) + bx_2(t) = 0$ with a and b not both zero for all t in I then $x_1(t)$ and $x_2(t)$ are said to be Linearly Dependent.

Easier Way: (Sometimes)

<u>Theorem:</u> If f and g are differentiable functions on an open interval I and if $W(f,g)(t_0) \neq 0$ for some point t_0 in I, the f and g are linearly independent on I.

Furthermore if f and g are linearly dependent on I, then $W(f,g)(t_0) = 0$ for all t in I.

Ex 1: Consider the differential equation $y''+2ty'+t^2y=0$ on the interval $-\infty < t < \infty$. Assume that y_1 and y_2 are two solutions satisfying the given initial conditions.

- (a) Do the solutions form a fundamental set?
- (b) Do the two solutions form a linearly independent set of functions on $-\infty < t < \infty$

1)
$$y_1(1) = 2$$
, $y_1'(1) = 2$; $y_2(1) = -1$, $y_2'(1) = -1$

2)
$$y_1(0) = 0$$
, $y_1'(0) = 1$; $y_2(0) = -1$, $y_2'(0) = 0$

Ex 2: Find a (3x3) constant matrix A such that $[\overline{y}_1(t), \overline{y}_2(t), \overline{y}_3(t)] = [y_1(t), y_2(t), y_3(t)]A$. Then determine whether $\{\overline{y}_1(t), \overline{y}_2(t), \overline{y}_3(t)\}$ is also a fundamental set by calculating $\det(A)$.

$$y''' - y'' = 0, \quad \{y_1(t), y_2(t), y_3(t)\} = \{1, t, e^{-t}\}$$
$$\{\overline{y}_1(t), \overline{y}_2(t), \overline{y}_3(t)\} = \{1 - 2t, t + 2, e^{-(t+2)}\}$$