3.2 The General Solutions of Homogeneous Equations

We will start by looking as solutions of the homogeneous equation

$$y'' + p(t)y' + q(t)y = 0$$
, $a < t < b$,

Where p(t) and q(t) are continuous on (a, b).

Definition: Let $f_1(t)$ and $f_2(t)$ be any two functions having a common domain, and let c_1 and c_2 be any two constants. Then the function $F(t) = c_1 f_1(t) + c_2 f_2(t)$ is a **linear combination** of $f_1(t)$ and $f_2(t)$. We can extend the definition in the obvious way to describe any number of functions.

<u>Theorem 3.2: The principle of superposition:</u>

If $y_1(t)$ and $y_2(t)$ are solutions to y''+p(t)y'+q(t)y=0 defined on the interval a < t < b, where p(t) and q(t) are continuous on (a, b). Then the linear combination $y(t) = C_1 y_1(t) + C_2 y_2(t)$ is also a solution of the differential equation.

Pf:
$$y' = y_1'(t) + y_2'(t)$$

 $y'' = y_1''(t) + y_2''(t)$

Substitute back into y''+p(t)y'+q(t)y to get:

$$(y_1"(t) + y_2"(t)) + p(t)(y_1'(t) + y_2'(t)) + g(t)(y_1"(t) + y_2"(t))$$

$$= \underbrace{y_1" + p(t)y_1' + g(t)y_1}_{=0} + \underbrace{y_2" + p(t)y_2' + g(t)y_2}_{=0} = 0 \quad \text{q.e.d.}$$

If $y_1(t)$ and $y_2(t)$ are two solutions of y''+p(t)y'+q(t)y=0 and every other solution y(t) can be written as a linear combination of these two (ie. $y(t)=C_1y_1(t)+C_2y_2(t)$) then $y_1(t)$ and $y_2(t)$ are a **fundamental set of solutions**.

Consider y''+p(t)y'+q(t)y=0 with the initial conditions $y(t_0)=y_0$, $y'(t_0)=y_0'$. If we start with 2 solutions y_1 and y_2 then $y=C_1y_1+C_2y_2$ is also a solution and by using the initial condition we get a system of equations:

$$y_0 = C_1 y_1(t_0) + C_2 y_2(t_0)$$

 $y_0' = C_1 y_1'(t_0) + C_2 y_2'(t_0)$

We can use Cramer's Rule to solve the system:

$$C_{1} = \frac{\begin{vmatrix} y_{0} & y_{2}(t_{0}) \\ y_{0}' & y_{2}'(t_{0}) \end{vmatrix}}{\begin{vmatrix} y_{1}(t_{0}) & y_{2}(t_{0}) \\ y_{1}'(t_{0}) & y_{2}'(t_{0}) \end{vmatrix}} \quad \text{and} \quad C_{2} = \frac{\begin{vmatrix} y_{1}(t_{0}) & y_{0} \\ y_{1}'(t_{0}) & y_{0} \end{vmatrix}}{\begin{vmatrix} y_{1}(t_{0}) & y_{2}(t_{0}) \\ y_{1}'(t_{0}) & y_{2}'(t_{0}) \end{vmatrix}}$$

Notice that C_1 and C_2 have solutions as long as

$$\begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix} \neq 0$$

or
$$y_1 y_2' - y_2 y_1' \neq 0$$
 at t_0

This determinant is known as the Wronskian: $W = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix}$

Theorem 3.3: Suppose y_1 and y_2 are two solutions to

$$y'' + p(t)y' + q(t)y = 0, \quad a < t < b,$$

Where p(t) and q(t) are continuous on (a, b). Let W(t) be the Wronskian of y_1 and y_2 . If there is a point t_0 in (a, b) such that $W(t_0) \neq 0$, then $\{y_1, y_2\}$ is a fundamental set of solutions.

Theorem 3.4: Let y_1 and y_2 be solutions of the homogenous linear differential equation y'' + p(t)y' + a(t)y = 0, a < t < b,

Where p(t) and q(t) are continuous on (a, b). Let W(t) be the Wronskian of y_1 and y_2 . If t_0 is any point in (a, b), then

$$W(t) = W(t_0)e^{-\int_{t_0}^t p(s)ds}$$

Why do we care about Theorem 4.4? Because it says that if the Wronskian is not zero at **any** point of (a, b) then it is not zero at **every** point of (a, b).

Ex:

- (a) Determine whether the given functions are solutions of the differential equation.
- (b) If both functions are solutions, calculate the Wronskian. Does this calculation show that the two functions form a fundamental set of solutions?
- (c) If the two functions have been shown in part (b) to form a fundamental set, construct the general solution and determine the unique solution satisfying the given initial conditions.
- 1. y'' + y = 0; $y_1(t) = \sin t \cos t$, $y_2(t) = \sin t$; $y(\pi/2) = 1$ and $y'(\pi/2) = 1$

2. y''-4y'+4y=0; $y_1(t)=e^{2t}$, $y_2(t)=te^{2t}$; y(0)=2 and y'(0)=0

3. ty'' + y' = 0, $0 < t < \infty$; $y_1(t) = \ln t$, $y_2(t) = \ln(3t)$; y(3) = 0 and y'(3) = 3

4. 4y'' + y = 0; $y_1(t) = \sin((t/2) + (\pi/3))$, $y_2(t) = \sin((t/2) - (\pi/3))$; y(0) = 0 and y'(0) = 1