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3 Second and Higher Order Differential Equations

3.2 The General Solutions of Homogeneous Equations

We will start by looking at solutions of the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0

where p(t) and q(t) are continuous on (a, b).
Definition: Let f1(t) and f2(t) be any two functions having a common domain, and let c1 and
c2 be any two constants. Then the function F (t) = c1f1(t) + c2f2(t) is a linear combination
of f1(t) and f2(t). We can extend the definition in the obvious way to describe any number
of functions.

Principle of Superposition

Theorem 3.2: The principle of superposition:
If y1(t) and y2(t) are solutions to y′′ + p(t)y′ + q(t)y = 0 defined on the interval
a < t < b, where p(t) and q(t) are continuous on (a, b). Then the linear combination
y(t) = C1y1(t) + C2y2(t) is also a solution of the differential equation.

Proof For simplicity we will assume C1 = C2 = 1 but if you include those the proof is the
same.

y = y1 + y2

y′ = y′1 + y′2

y′′ = y′′1 + y′′2

.

Substitute back into y′′ + p(t)y′ + q(t)y = 0 to get:

y′′1 + y′′2 + p(t)(y′1 + y′2) + q(t)(y1 + y2) = y′′1 + p(t)y′1 + q(t)y1︸ ︷︷ ︸
=0

+ y′′2 + p(t)y′2 + q(t)y2︸ ︷︷ ︸
=0

= 0

QED

Definition 3.1. If y1(t) and y2(t) are solutions to y′′ + p(t)y′ + q(t)y = 0 and every other
solution y(t) can be written as a linear combination of these two (ie. y(t) = C1y1(t)+C2y2(t)

) then y1(t) and y2(t) are a fundamental set of solutions.
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Consider y′′ + p(t)y′ + q(t)y = 0 with the initial conditions y(t0) = y0, y′(t0) = y′0 . If we
start with 2 solutions y1 and y2 then y = C1y1 + c2y2 is also a solution and we can solve for
the constants C1 and C2 by using the initial conditions. We get a system of equations:

y0 = C1y1(t0) + C2y2(t0)

y′0 = C1y
′
1(t0) + C2y

′
2(t0)

We can use Cramer’s Rule to solve the system:

C1 =

det
[
y0 y2(t0)

y′0 y′2(t0)

]

det
[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

] and C2 =

det
[
y1(t0) y0

y′1(t0) y′0

]

det
[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

]
Notice that C1 and C2 have solutions as long as

det
[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

]
̸= 0

or y1(t0)y
′
2(t0)− y2(t0)y

′
1(t0) ̸= 0

This determinant is known as the Wronskian: W (t) = det
[
y1(t) y2(t)

y′1(t) y′2(t)

]
̸= 0

Fundamental Solutions

Theorem: Suppose y1(t) and y2(t) are two solutions to

y′′ + p(t)y′ + q(t)y = 0, a < t < b,

where p(t) and q(t) are continuous on (a, b). Let W (t) be the Wronskian of y1(t) and
y2(t). If there is a point t0 in (a, b) such that W (t0) ̸= 0 , then {y1(t), y2(t)} is a
fundamental set of solutions for y′′ + p(t)y′ + q(t)y = 0.
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Abel’s Theorem

Abel’s Theorem: Suppose y1(t) and y2(t) are two solutions to

y′′ + p(t)y′ + q(t)y = 0, a < t < b,

where p(t) and q(t) are continuous on (a, b). Let W (t) be the Wronskian of y1(t) and
y2(t). If t0 is any point in (a, b), then

W (t) = W (t0)e
−

∫ t
t0

p(s)ds

Why do we care about Abel’s Theorem? Because it says that if the Wronskian is not
zero at any point of (a, b) then it is not zero at every point of (a, b).

Example 3.2.1.

(a) Determine whether the given functions are solutions of the differential equation.
(b) If both functions are solutions, calculate the Wronskian. Does this calculation show that

the two functions form a fundamental set of solutions?
(c) If the two functions have been shown in part (b) to form a fundamental set, construct the

general solution and determine the unique solution satisfying the given initial conditions.

1. y′′ + y = 0; y1(t) = sin t cos t, y2(t) = sin t; y
(
π
2

)
= 1 and y′

(
π
2

)
= 1

2. y′′ − 4y′ + 4y = 0; y1(t) = e2t, y2(t) = te2t; y(0) = 2 and y′(0) = 0
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3. ty′ + y = 0, 0 < t < ∞; y1(t) = ln t, y2(t) = ln(3t); y(3) = 0 and y′(3) = 3

4. 4y′′+ y = 0; y1(t) = sin(t/2+π/3), y2(t) = sin(t/2−π/3); y(0) = 0 and y′(0) = 1
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3.3 Constant Coefficient Differential Equations

We will begin with linear, homogeneous, 2nd order differential equation with constant coef-
ficients. This means an equation of the form:

ay′′ + by′ + cy = 0 where a, b, and c are constants.

If we start with something like y′′ − y = 0 then we have two obvious solutions:

y1 = C1e
t

y2 = C2e
−t

Now consider the more general case ay′′ + by′ + cy = 0. A solution to this equation could be
of the form

y = ert.

To see that this is a solution we will take two derivatives and substitute back into the original
equation:

y′ = rert

y′′ = r2ert
.

So if we substitute back into ay′′ + by′ + cy = 0 to solve for r we get:

(ar2 + br + c)ert = 0.

ar2 + br + c = 0 is called the characteristic equation.

The solutions to the characteristic equation are the exponents for y = ert. There are always
2 solutions to a quadratic equation so if r1 and r2 are distinct real solutions to ar2+br+c = 0

then

y = C1e
r1t + C2e

r2t

where C1 and C2 are arbitrary constants, is the solution to ay′′ + by′ + cy = 0.
If r1 and r2 are repeated real solutions or complex solutions then we will deal with that later.
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Example 3.3.1. Solve y′′ + 2y′ − 3y = 0

Step 1: Solve the characteristic equation.

r2 + 2r − 3 = 0

Step 2: Write down the solution. y = C1e
r1t + C2e

r2t

y = C1e
−3t + C2e

t

Example 3.3.2. Initial Value Problem: Solve the equation and describe the behavior as
t → ∞.

6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0

Step 1: Solve the characteristic equation.

6r2 − 5r + 1 = 0

Step 2: Write the solution: y = C1e
r1t + C2e

r2t

Step 3: Solve for the constants C1 and C2
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Example 3.3.3. Solve the differential equation and describe the behavior as t → ∞.

2y′′ + y′ − 4y = 0, y(0) = 0, y′(0) = 1
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3.4 Repeated Roots and Reduction of Order

Recall: 2nd order differential equation ay′′ + by′ + cy = 0 has characteristic equation:

ar2 + br + c = 0

with solutions
r =

−b±
√
b2 − 4ac

2a
= r1 and r2.

There are three cases for these roots:
Case 1: b2 − 4ac > 0 gives two distinct real roots r1 and r2

The solutions to ay′′ + by′ + cy = 0 are y = C1e
r1t and y2 = C2e

r2t. You can put them
together to get the general solution

y = C1e
r1t + C2e

r2t

Case 2: b2 − 4ac < 0 gives two complex conjugate solutions r1 = α + βi and r2 = α− βi

The solutions to ay′′ + by′ + cy = 0 are discussed in section 3.5.

Case 3: b2 − 4ac = 0 gives 1 repeated root r.
The two solutions to ay′′ + by′ + cy = 0 are y1 = C1e

rt and y2 =?

If we know one solution to a differential equation we can find a second solution using a
technique known as Reduction of Order.

Suppose we know one solution y1 to the equation y′′+p(t)y′+q(t)y = 0 then to find a linearly
independent second solution we can use a nonconstant multiple of our original solution.

Let
y2(t) = v(t)y1(t).

Or if you don’t want to use as much the function notation you can abbreviate it as

y2 = v(t)y1.

Since we want this to be a solution to the equation y′′ + p(t)y′ + q(t)y = 0 we will need two
derivatives:

y′2 = v(t)y′1 + v′(t)y1

y′′2 = v(t)y′′1 + v′(t)y′1 + v′(t)y′1 + v′′(t)y1

We will substitute y2, y′2 and y′′2 back into the original equation to get:

y′′2 + p(t)y′2 + q(t)y2 = 0
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v(t)y′′1 + 2v′(t)y′1 + v′′(t)y1 + p(t) (v(t)y′1 + v′(t)y1) + q(t) (v(t)y1) = 0

Simplify and combine the terms by v′′(t), v′(t) and v(t) we see that

v′′(t)y1 + (2y′1 + p(t)y1) v
′(t) + (y′′1 + p(t)y′1 + q(t)y1) v(t) = 0.

This leaves us with the first order differential equation:

y1v
′′(t) + (2y′1 + p(t)y1) v

′(t) = 0

Which is simply a first order differential equation in v′(t). We can solve this equation for
v′(t) using the techniques we learned in Ch 2 and then we can integrate to find v(t) . Then
we have our second solution:

y2 = v(t)y1

Example 3.4.1. Find the general solution for 4y′′ + 12y′ + 9y = 0

Start with the characteristic equation: 4r2 + 12r + 9 = 0

Using this r we can write our solutions: y1 = C1e
−3t/2 and y2 = v(t)e−3t/2

Substitute y2, y′2 and y′′2 back into the original equation
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In general:
Repeated Roots Solutions

If r is the only solution to the characteristic equation then two linearly independent
solutions to ay′′ + by′ + cy = 0 are

y1 = C1e
rt and y2 = C2te

rt

Example 3.4.2. Find the general solution for 9y′′ − 12y′ + 4y = 0, y(0) = −1, y′(0) = 2

Example 3.4.3. Suppose we know that one solution to t2y′′ + 3ty′ + y = 0 is y1 = t−1 find
a second linearly independent solution using reduction of order.
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3.5 Complex Roots of the Characteristic Equation

Recall:

eiθ = cos θ + i sin θ

e−iθ = cos(−θ) + i sin(−θ)

= cos θ − i sin θ

We will use these formulas to convert complex roots of ay′′ + by′ + cy = 0 to real solutions.
If r = α±βi are the solutions to the characteristic equation them we know how to write the
general solution:

y = C1e
(α+βi)t + C2e

(α−βi)t

but this is not a useful form. We want real solutions. We are going to use the identities at
the top of the page to convert this into the form

y = eαt (A cos βt+B sin βt) .

e(α+βi)t = eαteβit = eαt (cos βt+ i sin βt)

e(α−βi)t = eαte−βit = eαt (cos βt− i sin βt)

So the general solution is

y = C1e
αt (cos βt+ i sin βt) + C2e

αt (cos βt− i sin βt)

which simplifies to
y = eαt (A cos βt+B sin βt) .

Example 3.5.1. Find the general solution for y′′ + 2y′ + 2y = 0

Step 1: Characteristic equation

Step 2: Write the solution. Here α = -1 and β = 1
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Example 3.5.2. Find the general solution for

y′′ + 4y = 0, y(0) = 0, y′(0) = 1

Example 3.5.3. Find the general solution for

y′′ − 2y′ + 5y = 0, y
(
π
2

)
= 0, y′

(
π
2

)
= 2
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We would like to be able to write the solution

y = Aeαt cos βt+Beαt sin βt (3.1)

as one trigonometric function of the form:

y(t) = Reαt cos(βt− δ)

WhereReαt is the amplitude and δ is the phase angle. Using a trigonometric identity we
can expand this to be:

y = Reαt cos δ cos βt+Reαt sin δ sin βt (3.2)

Set the two equations (3.1) and (3.2) equal to each other.

Reαt cos δ cos βt+Reαt sin δ sin βt = Aeαt cos βt+Beαt sin βt

eαt cancels on both sides and we can solve for R and δ with the two equations:

R cos δ = A and R sin δ = B

square both and add them together to get

R2 cos2 δ +R2 sin2 δ = A2 +B2

So R =
√
A2 +B2

To solve for δ you divide the equations to get tan δ =
B

A
Be sure to pick the correct δ since there are two choices.

Example 3.5.4. Write this equation in the form y(t) = Reαt cos(βt− δ)

y = −e−t cos t+
√
3e−t sin t
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3.6 Unforced Mechanical Vibrations

Consider the spring and mass system shown here:

m

A

m B

m C

Y

y(t)

Spring

Equilibrium

Perturbed state

Y is the elongation of the spring in the downward direction caused by the mass m. y(t) is
the distance traveled by the mass from the equilibrium position. The spring constant is k.
If we do not know the value of k we can solve for it. From physics we know that the force of
the spring is nearly proportional to Y . So at equilibrium we can write the following equations
to solve for k:

F = kY

mg = kY

k =
mg

Y

In reality all systems have some amount of damping so the usual spring-mass-damper system
can be modeled as follows: k is the spring constant, γ is the damping constant, and m is the
mass.

mass, m

γk

F

15



Chapter 3 Notes, Kohler & Johnson 2e Chalmeta

From our free body diagram we can find the forces acting on the mass:

Force of the spring k[Y + y(t)] ↑
Force of gravity mg ↓
Force of damper γ y′(t) ↑
Some external forcing function: F (t)

Using the standard formula
∑

F = ma = mv′′(t) to get a differential equation:

mg − k[Y + y(t)]− γy′(t) + F (t) = my′′(t)

my′′(t) + γy′(t) + ky(t) = F (t) (3.3)

Units: The units all have to be force units so

k =
force

displacement =
kg

s2
force: lbs, N, kg · m

s2
displacement: m, ft, etc.

γ =
force
speed =

kg

s
speed: m

s , ft
s , etc.

The characteristic equation for 3.3

mr2 + γr + k = 0

has solutions
r =

−γ ±
√

γ2 − 4mk

2m

There are 3 possible outcomes:

γ2 − 4mk < 0: Complex solutions, underdamped, oscillation.
γ2 − 4mk = 0: One repeated solution, critically damped, no oscillation.
γ2 − 4mk > 0: Two negative real solutions, overdamped, no oscillation.
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Example 3.6.1. A mass of 100 g stretches a spring 5 cm. If the mass is pulled down 2 cm,
given a downward velocity of 10 cm/sec, and if there is no damping, determine the position
y(t) of the mass at any time t. Find the frequency, period, and amplitude of the motion.

Step 1: Draw a picture and identify what you know including Initial Conditions:

Step 2: Write down a useful equation(s):

my′′ + ky = 0

Step 3: Solve:

y(t) = 2 cos(14t) +
5

7
sin(14t) (3.4)

We would like to be able to write equation 3.4 as one trigonometric function of the form:

y(t) = R cos(µt− δ)

Where R is the amplitude or maximum displacement of our vibration, µ is the natural
frequency (Hz) of the vibration and δ is the phase angle. If we expand that with the cosine
angle difference identity (cos(A− B) = cosA cosB + sinA sinB) what we get is something
of the form:

y(t) = R cos δ cos(µt) +R sin δ sin(µt) (3.5)

17
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We can compare the identity (equation 3.5) to the answer (equation 3.4).

R cos δ cos(µt) +R sin δ sin(µt) = 2 cos(14t) +
5

7
sin(14t)

and solve for R and δ. Assuming that µ = 14 we can compare the coefficients:

R cos δ = 2 and R sin δ =
5

7

Then

R2 cos2 δ +R2 sin2 δ = R2 = 22 +
(
5
7

)2
=⇒ R =

√
221

7

δ can be found by taking the quotient of the two equations:

R sin δ

R cos δ
= tan δ =

5

14
=⇒ δ = tan−1

(
5
14

)
The final solution is

y(t) =

√
221

7
cos(14t− δ)
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Example 3.6.2. A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a
viscous damper with a damping constant of 2 lb-sec/ft. If the mass is set in motion from its
equilibrium position with a downward velocity of 3 in/sec, find its position y at any time t .
Plot y versus t . Determine the quasi frequency and the quasi period.
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Example 3.6.3. A mass weighing 8 pounds stretches a spring 6 inches before coming to
rest. It is pulled down three more inches before being released with an initial velocity of 1
foot per second. Find the amplitude, period, and circular frequency of the resulting motion.

20
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Example 3.6.4. An object weighing 32 pounds stretches a spring 2 feet. It is pulled down
6 inches and released in a medium where resistance is 4 times the velocity. Describe the
motion of the spring.

Example 3.6.5. The resistance factor in Example 3.6.4 is doubled to 8 times the velocity.
Describe the resulting motion.

Example 3.6.6. The resistance in Example 3.6.4 is increased to 10 times velocity. Describe
the motion.
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3.7 The General Solution of a Linear Nonhomogenous Equation

Given the differential equation

y′′ + p(t)y′ + q(t)y = g(t) (3.6)

we know that this is nonhomogeneous if g(t) ̸= 0. For every nonhomogeneous equation there
is a corresponding homogenous equation:

y′′ + p(t)y′ + q(t)y = 0 (3.7)

Suppose that Y1 and Y2 are two solutions to the nonhomogenous equation 3.6 and {y1, y2}
are a fundamental set of solutions for the corresponding homogenous equation 3.7, then:

Y1 − Y2 = C1y1 + C2y2

Translation: There is only ONE particular solution to any nonhomogeneous differential
equation.

The General Solution

The complete solution to equation 3.6 y′′ + p(t)y′ + q(t)y = g(t) can be written as:

y = C1y1 + C2y2 + Yp

Where {y1, y2} are a fundamental set of solutions for the corresponding homogeneous
equation y′′ + p(t)y′ + q(t)y = 0, C1 and C2 are arbitrary constants, and Yp is some
particular solution to equation 3.6

The Principle of Superposition

Let u(t) be a solution of y′′ + p(t)y′ + q(t)y = g1(t) and v(t) be a solution to
y′′ + p(t)y′ + q(t)y = g2(t). If a1 and a2 are any constants then the function

yp = a1u(t) + a2v(t)

is a solution to
y′′ + p(t)y′ + q(t)y = a1g1(t) + a2g2(t)

22
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3.8 The Method of Undetermined Coefficients

The solution to every differential equation y′′ + p(t)y′ + q(t)y = g(t) is always of the form

y = yh + yp

where yh is the homogeneous solution and yp is the particular solution.
There are always 3 steps to solving y′′ + p(t)y′ + q(t)y = g(t)

Step 1: Find the homogeneous solution yh = C1y1 + C2y2.

Step 2: Find the particular solution yp.

Step 3: Add them together y = yh + yp = C1y1 + C2y2 + yp

We know how to do Step 1: Solve the characteristic equation.
We know how to do Step 3.
How are we going to find the particular solution?

Answer: Guess a solution that looks like your answer g(t).
This is known as the Method of Undetermined Coefficients.

Example 3.8.1. y′′ − 2y′ − 3y = e−3t

23
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Example 3.8.2. y′′ + 2y′ = 3 + 4 sin(2t)
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Example 3.8.3. y′′ + 2y′ + y = 2e−t

25
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The initial guess for the method of undetermined coefficients to solve the differential
equation

ay′′ + by′ + cy = gi(t)

is summarized in the following table. The first column is the form of gi(t) and the second
column is the form of the particular solution Yi(t). Notice that each equation has ts. Choose
s to be the smallest integer such that NO term of Yi(t) is a solution to the homogeneous
equation.

gi(t) Yi(t)

Pn(t) = ant
n + · · ·+ a1t+ a0 ts [Ant

n + · · ·+ A1t+ A0]

Pn(t)e
αt ts [Ant

n + An−1t
n−1 + · · ·+ A1t+ A0] e

αt

Pn(t)e
αt

sin(βt)

cos(βt)

ts [Ant
n + · · ·+ A1t+ A0] e

αt sin(βt)+

+ts [Bnt
n + · · ·+B1t+B0] e

αt cos(βt)

Example 3.8.4. Determine a suitable form for the particular solution Y (t) if the method
of undetermined coefficients is to be used.

y′′ − 4y′ + 4y = 2t2 + 4te2t + t sin(2t)

26
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3.9 Variation of Parameters: (The plow method)

There are always 3 steps to solving the differential equation

y′′ + p(t)y′ + q(t)y = g(t)

Step 1: Find the homogeneous solution. yh = C1y1 + C2y2.
Step 2: Find the particular solution: yp

Step 3: Add them together: y = yh + yp = C1y1 + C2y2 + yp

In section 3.8 we saw that we could guess at a solution that looked like the answer. That
is fine if your answer is nice but it doesn’t always work well. Variation of parameters is a
completely general form that applies to all situations. However, it isn’t always possible to
solve the problem explicitly because in the end there are always integrals to be evaluated.

Variation of Parameters:

Start with y′′ + p(t)y′ + q(t)y = g(t)

Step 1: Solve the homogeneous equation for the family of solutions y1, y2

Step 2: Let the particular solution have the form:

yp = u1(t)y1 + u2(t)y2

where u(t) and v(t) are functions that we will determine. To solve for u1 and u2 we need to
find y′p and y′′p and substitute back into the original equation. Don’t forget the product rule.

y′p = u1y
′
1 + u′

1y1 + u2y
′
2 + u′

2y2

Now at this point we have generated 4 terms and 4 unknown values (u1, u2, u′
1 and u′

2) so
we need to put some constraints on the system. There are many choices we could make here
but the best choice is to assume that

u′
1y1 + u′

2y2 = 0. (3.8)

This equation will be one that we will use to solve for u1 and u2 and with this constraint
the derivative simplifies to y′p = u1y

′
1 + u2y

′
2. Now take a second derivative

y′′p = u1y
′′
1 + u′

1y
′
1 + u2y

′′
2 + u′

2y
′
2
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Now put yp, y′p and y′′p back into the original differential equation and simplify:

g(t) = y′′p + p(t)y′p + q(t)yp

= u1 y
′′
1 + u′

1 y
′
1 + u2 y

′′
2 + u′

2 y
′
2 + p(t)[u1 y

′
1 + u2 y

′
2] + q(t)[u1 y1 + u2 y2]

= u1 y
′′
1 + p(t)u1 y

′
1 + q(t)u1 y1 + u2 y

′′
2 + p(t)u2 y

′
2 + q(t)u2 y2 + u′

1 y
′
1 + u′

2 y
′
2

= u1 (y
′′
1 + p(t) y′1 + q(t) y1) + u2 (y

′′
2 + p(t) y′2 + q(t) y2) + u′

1 y
′
1 + u′

2 y
′
2

Which simplifies to
g(t) = u′

1 y
′
1 + u′

2 y
′
2 (3.9)

No we can solve equations 3.8 and 3.9 for u1 and u2

u′
1 y1 + u′

2 y2 = 0

u′
1 y

′
1 + u′

2 y
′
2 = g(t)

Solving this system is straight forward. Solve the first for u′
1 and plug that into the second

and simplify a little as follows:

u′
1 = −u′

2y2
y1

g(t) =

(
−u′

2y2
y1

)
y′1 + u′

2y
′
2

g(t) = u′
2

(
y′2 −

y2y
′
1

y1

)
u′
2(t) =

y1g(t)

y1y′2 − y2y′1

After plugging this back into u1 we get

u′
1 = − y2g(t)

y1y′2 − y2y′1

Now, recall that if y1, y2 form a fundamental set of linearly independent solutions to
the characteristic equation, then the Wronskian will not equal zero. So, finally we need to
integrate u′

1 and u′
2

u1 = −
∫

y2g(t)

y1y′2 − y2y′1
, u2 =

∫
y1g(t)

y1y′2 − y2y′1
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These results are summarized here:

Variation of Parameters

Consider the differential equation,

y′′ + q(t)y′ + r(t)y = g(t)

Assume that y1(t) and y2(t) are a fundamental set of solutions for

y′′ + q(t)y′ + r(t)y = 0

Then the particular solution to the nonhomogeneous differential equation is

yp(t) = −y1

∫
y2g(t)

W (y1, y2)
+ y2

∫
y1g(t)

W (y1, y2)

Note: The above equation makes use of Cramer’s Rule and isn’t completly necessary
for obtaining the particular solution. I usually just solve the system by guessing the
answer of the form yp = u(t)y1+v(t)y2 and then applying the constraint u′y1+v′y2 = 0.
From there I solve the system and integrate u′

1 and u′
2 at the end.

Example 3.9.1. Solve y′′ + 9y = 9 sec2 3t

Step 1: Solve homogenous equation y′′ + 9y = 0

yh = C1 cos 3t+ C2 sin 3t
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Example 3.9.2. Solve
ty′′ − (1 + t)y′ + y = t2e2t

where the homogenous solutions are y1 = 1 + t and y2 = et.

Solution: For the particular solution we will guess:

yp = v(1 + t) + u(et)
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3.10 Forced Mechanical Vibrations

The nonhomogeneous case of section 3.6

mass, m

γk

F (t)

In these problems we have some external forcing function driving the system. The forcing
function can be almost anything but usually it is periodic.

F (t) = F1 cos(ωt) + F2 sin(ωt)

So our equation looks like:

my′′(t) + γy′(t) + ky(t) = F (t)

my′′(t) + γy′(t) + ky(t) = F1 cos(ωt) + F2 sin(ωt)

and the solution is once again
y(t) = yh(t) + yp(t) (3.10)

where yh(t) is the homogeneous solution and yp(t) is the particular solution.

Two cases here:

I. If there is no damping (ie. γ = 0) then the solutions to 3.10 are of the form

yh(t) = C1 cos(ω0t) + C2 sin(ω0t)

yp(t) =

 A cos(ωt) +B sin(ωt) when ω ̸= ω0

At cos(ωt) +Bt sin(ωt) when ω = ω0

(3.11)

The second case ω = ω0 is known as resonance. When the frequency of the forcing
function is the same as the natural frequency of the system then the motion of they
system is unbounded as t → ∞.
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Figure 1: y = 0.25t sin t

II. If γ is not zero then our solutions all have an e−rt component in the homogenous
solutions (yh(t)). The total solution is

y(t) = yh(t) + yp(t)

and as t → ∞ the homogeneous part, called the transient solution, goes to zero so
in the long term you are only left with the particular solution. The particular solution
is therefore called the steady state solution or forced response.

Example 3.10.1. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an
external force of 10 sin

(
t

2

)
N and moves in a medium that imparts a viscous force of 2N

when the speed is 4 cm/sec. If the mass is set in motion from its equilibrium position with
an initial upward velocity of 3 cm/sec find an expression for the position of the mass at any
time t. y(t) is measured positive upwards. Identify the transient and steady state parts of
the solution.

IMPORTANT: make sure your units match up.
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3.11 Higher Order Linear Homogeneous Differential Equations

Existence and Uniqueness
Existence and Uniqueness

Let p0(t), p1(t), . . . , pn−1(t) and g(t) be continuous functions defined on the interval
a < t < b, and let t0 be in (a, b). Then the initial value problem

y(n) + pn−1y
(n−1) + · · ·+ p2(t)y

′′ + p1(t)y
′ + p0(t)y = g(t),

y(t0) = y0, y′(t0) = y′0, y′′(t0) = y′′0 , . . . , y(n−1)(t0) = y
(n−1)
0

has a unique solution on the entire interval (a, b).

We need n initial conditions to solve an initial value problem (IVP) here. As in the 2nd

order case we will find n linearly independent solutions to the homogeneous equation. We
can still determine linear independence by calculating the Wronskian.

W =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′1 y′2 · · · y′n
... ... . . . ...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
If W ̸= 0 then y1, y2, . . . , yn are linearly independent and form a fundamental set of

solutions for
y(n) + pn−1y

(n−1) + · · ·+ p2(t)y
′′ + p1(t)y

′ + p0(t)y = 0.

For the nonhomogeneous case there is still only one particular solution yp and the total
solution is

Y (t) = yh(t) + yp(t).

Recall: A set of solutions is a fundamental set of solutions if every solution of the
differential equation can be represented as a linear combination of the the elements of the
set.
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Abel’s Theorem

Let y1(t), y2(t), . . . , yn(t) be n solutions of the homogeneous linear differential equation

y(n) + pn−1y
(n−1) + · · ·+ p2(t)y

′′ + p1(t)y
′ + p0(t)y = 0, a < t < b,

Where p0(t), p1(t), . . . , pn−1(t) are continuous functions on (a, b). Let W (t) be the
Wronskian of y1(t), y2(t), . . . , yn(t). If t0 is any point in (a, b), then

W (t) = W (t0)e
−

∫ t
t0

pn−1(s)ds, a < t < b

Why do we care about Abel’s Theorem? Because it says that if the Wronskian is not
zero at any point of (a, b) then it is not zero at every point of (a, b).

Definition 3.2. A set of functions defined on a common domain, say f1(t), f2(t), . . . , fr(t)

defined on the interval a < t < b, is called a linearly dependent set if there exist constants
k1, k2, . . . , kr, not all zero, such that

k1f1(t) + k2f2(t) + · · ·+ krfr(t), a < t < b.

A set of functions that is not linearly dependent is called linearly independent.

Linearly dependent essentially means that the functions f1(t), f2(t), . . . , fr(t) are all dif-
ferent, while dependent sets are not really different.

Example 3.11.1. Solve the initial value problem given the following information.

y′′′ − y′ = 0; y(0) = 4, y′(0) = 1, y′′(0) = 3

y1(t) = 1, y2(t) = et, y3(t) = e−t
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Example 3.11.2. Consider the differential equation y′′ + 2ty′ + t2y = 0 on the interval
−∞ < t < ∞. Assume that y1 and y2 are two solutions satisfying the given initial conditions.

(a) Do the solutions form a fundamental set?

(b) Do the two solutions form a linearly independent set of functions on −∞ < t < ∞.

1. y1(1) = 2, y′1(1) = 2, y2(1) = −1, y′2(1) = −1

2. y1(0) = 0, y′1(0) = 1, y2(0) = −1, y′2(0) = 0
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3.12 Higher Order Homogeneous Constant Coefficient Differential
Equations

Consider: (−1)1/3 = −1

What about the solutions to x3 + 1 = 0? There are three, so where are the other two?

Try x =
1 + i

√
3

2
:
(
1 + i

√
3

2

)3

+ 1 = 0

So the third solution is

In order to find these solutions in the complex plane you need to start with Eulers formula:

eiθ = cos θ + i sin θ

For this example we can write −1 as a complex number:

−1 = eπi = cos π + i sin π

But we could have also written this more generically:

−1 = e(π+2nπ)i, n ∈ Z

So if we want three solutions to (−1)1/3 we can use the complex form:

(−1)1/3 =
(
e(π+2nπ)

)1/3
= e(π/3+2nπ/3), n = 0, 1, 2

which provides three distinct answers:

(−1)1/3 = eπ/3i, eπi, e5π/3i.

These can be graphed in the Real-Imaginary plane:
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We can use this to solve differential equations of higher order.

Example 3.12.1. Solve y(4) − 8y′ = 0

The procedure is the same as for second order equations. We assume that our solution
looks like y = erit where ri is a solution to the characteristic equation:

r4 − 8r = 0

r(r3 − 8) = 0

so either r = 0 or r3 − 8 = 0

The 4 solutions are r1 = 0, r1 = 2, r1 = −1+
√
3i, r1 = −1−

√
3i and the complete solution

is:

Example 3.12.2. The 4th order differential equation y(4) − y′′′ + 8y′′ − 8y′ + 4y = 0 has
characteristic equation (r− (1 + i))2(r− (1− i))2 = 0 in factored form. What is the general
solution?
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Example 3.12.3. Solve the IVP: y(4) − y′′′ = 0, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 1
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