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2 First Order Differential Equations 

2.1 First Order Equations - Existence and Uniqueness Theorems 

A differential equation of the form: 

y ′ + p(t)y = g(t) (2.1) 

is called a first order linear differential equation. 

Equation (2.1) is called homogeneous if g(t) = 0 . 

Equation (2.1) is called nonhomogeneous if g(t) ̸= 0 . 

Example 2.1.1. Consider the following initial value problems: 

a) y ′ = xy3 (x2 + 1)1/2 
, y(0) = 1 b) t2y ′ + 4ty = cos t, y(−1) = 2 

′ ′ t c) y = t 
√ 
y, y(0) = 0 d) (t2 − 4t)y + ty = e , y(2) = −1 

Which of these are first order? Which are linear? Homogeneous? 

Given the initial value problem y ′ + p(t)y = g(t), y(t0) = y0 several questions arise: 

1. Under what circumstances can we be sure the equation has a solution passing through 

the given point? 

2. Is it possible for an equation to have more than one solution through an initial point? 

Or equivalently, if we find a solution passing through a point, can we be sure it is the only 

solution? 
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Theorem 2.1. [Existence - Uniqueness Theorem I] Given the IVP y ′ + p(t)y = g(t) , 

y(t0) = y0, if and are both continuous on an open interval 

containing , the IVP is guaranteed to have 

a unique solution on . 

Applied to (a), (b), (c), and (d)? 

Consider the following first order linear differential equation. For each of the initial 

conditions, determine the largest interval a < t < b on which Theorem 2.1 guarantees the 

existence of a unique solution. 

t 
Example 2.1.2. y ′ + y = sin t 

t2 + 1

a) y(−2) = 1 b) y(0) = π c) y(π) = 0 
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t 
Example 2.1.3. y ′ + y = 0 

t2 − 4

a) y(6) = 0 b) y(1) = −1 c) y(0) = 1 d) y(−6) = 2 
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2.2 Linear First Order Differential Equations 

2.2.1 First Order Linear Homogeneous Equations 

Consider a linear first order differential equation of the form: 

y ′ + p(t)y = g(t) (2.2) 

where p(t) and g(t) are continuous functions on some interval a ≤ t ≤ b. We will begin by 

solving this equation for the homogeneous case (g(t) = 0). 

We would like to find a function whose derivative is close to the original function. A 
h(t)good choice is y = e . The trick will be to choose h(t) appropriately so lets try our choice 

for y in the original function and see what happens. We will need a derivative first: 
′ h(t) y = h ′ (t)e

Now we substitute into equation (2.2) to get: 

h ′ (t)eh(t) + p(t)eh(t) = 0 
h(t) h(t) h ′ (t)e = −p(t)e

h ′ (t) = −p(t) 

Taking a few liberties with the notation we can integrate both sides to solve for h(t): ∫ ∫ 
h(t) = h ′ (t) dt = − p(t) dt 

And our solution to the first order homogeneous differential equation is: 

∫ 
− p(t) dt y = e (2.3) 

Example 2.2.1. Solve y ′ − 2y = 0 
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In general they are not so easy. 

Example 2.2.2. Solve ty ′ + 2y = 0, y(1) = 0 

We need to fix the equation so it has the correct form: y ′ + p(t)y = 0 

Example 2.2.3. Solve y ′ + 2ty = 0, y(0) = 2 

∫ 
− 2t dt −t2+c Choose y = e = e

( ) 
′ π π 

Example 2.2.4. Solve y + (2t + sin t)y = 0, y = 
2 2 
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2.2.2 First Order Linear Nonhomogeneous Equations 

The Product Rule and Integration by Parts: 

Recall: Product Rule: d[uv] = uv ′ + vu ′ or d[uv] = udv + vdu 

We can rewrite this as d[uv] − vdu = udv and integrate both sides: ∫ ∫ ∫ 
d[uv] − vdu = udv ∫ ∫ 

to get uv − vdu = udv Integration by Parts 

Also from the product rule we can get ∫ 
uv = (udv + vdu) (2.4) 

We will use equation (2.4) with a change of variables to solve differential equations. 

If we start with a differential equation of the form: y ′ + p(t)y = 0 then we could easily 

integrate it if we could write it in the form: 

u(t)y ′ + u ′ (t)y = 0 

for some appropriate u(t) since this is in the form of the right hand side of equation (2.4). 

What do we mean by appropriate? 

We need to multiply by some function u(t) so that 

u(t)y ′ + u(t)p(t) y = 0. | {z } 
=u ′ (t) 

We will choose ∫ 
p(t)dt P (t) u(t) = e = e (2.5) 

and this is called the integrating factor. To see why this is a good choice of u(t) notice 
p(t)dt ′ that u ′ (t) = p(t)e 

∫ 
= p(t)u(t). If we take our original differential equation y + p(t)y = 0 

and multiply by u(t) we get 
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u(t)y ′ + u(t)p(t)y = u(t)y ′ + u ′ (t)y 

d 
(u(t)y(t)) = 0 (2.6) 

dt 

which is what we wanted. Integrating both sides of equation (2.6) we have a solution 

u(t)y(t) = C 

If the original equation is not homogenous 

y ′ + p(t)y = g(t) 

∫ 
p(t)dt we can still multiply by the integrating factor: u(t) = e 
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′ Example 2.2.5. y + 2ty = 2te−t2 

∫ 
2tdt t2+c Choose u = e = e . What do we do with c? 

Example 2.2.6. ty ′ + y = 3t cos 2t, t > 0 

First put the equation in the correct form. The coefficient of y ′ must be 1. 
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Example 2.2.7. Initial Value Problem: we can solve for C when we have an initial condition. 

ty ′ + 2y = sin t, y π = 1 
2

( )

⎧ ⎪⎪⎨ ⎪⎪⎩ 

sin t if 0 ≤ t ≤ π 

− sin t if π ≤ t ≤ 2π 
Example 2.2.8. ty ′ + 2y = g(t), y (0) = 3; g(t) = 
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2.3 Mixing Problems and Cooling Problems 

Example 2.3.1. A tank originally contains 100 gal of fresh water. Then water containing 
1 lb of salt per gallon is poured into the tank at a rate of 2 gal/min, and the mixture is 
2 

allowed to leave at the same rate. After 10 minutes the process is stopped, and fresh water 

is poured into the tank at a rate of 2 gal/min, with the mixture again leaving at the same 

rate. Find the amount of salt in the tank at the end of an additional 10 min. 
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Example 2.3.2. In an oil refinery, a storage tank contains 2000 gallons of gasoline that 

initially has 100 lbs. of additive mixed in. In order to produce a different grade of gas, 

gasoline containing 2 lbs. of additive per gallon is pumped into the tank at the rate of 40 

gallons per minute, and the well stirred mixture is pumped out at the same rate. Find the 

amount and concentration of additive after 35 minutes. 
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Example 2.3.3. In Example 2.3.2, suppose the tank holds 3000 gallons and is initially 

only 2/3 full of the original mixture. Gasoline containing 2 lbs. of additive per gallon flows 

into the tank at the rate of 40 gallons per minute but the well-stirred mixture is draining 

out at the slower rate of 10 gallons per minute. How many pounds of additive will be in the 

tank at the moment the tank becomes full? 
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2.4 Population Dynamics and Radioactive Decay 

Example 2.4.1. Radiocarbon Dating: The amount of carbon-14 present in a piece of wood 

decreases at a rate proportional to the current amount. 

a) If carbon-14 has a half life of 5730 years find an expression for Q(t), the amount of 

carbon-14 present at any time t, if Q(0) = Q0 . 

b) Suppose that certain remains are discovered in which the current residual amount of 

carbon-14 is 20% of the original amount. Determine the age of these remains. 
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Example 2.4.2. Suppose 200 mg. of Einsteinium-253 are present in a closed container and 

additional amounts are added at the rate of 3 mg. per day. 

a) Find a formula for the amount y(t) present at time t if the decay constant for this 

substance is −0.02828. 

b) Find the limiting amount yi as t → ∞. 

c) After how long will the amount present be 150 mg.? 

Since the amount decreases at a rate proportional to the current amount we can write 

our differential equation as 
dy 

= −0.02828y(t) + 3 
dt 

The important thing to check is your units. dy/dt is mg/day and the amount being added 

is mg/day so the units agree. 

Solving the differential equation is fairly straight forward using the integrating factor. 

y ′ + 0.02828y(t) = 3 

0.02828t Multiply by the integrating factor u = e to get 

0.02828t ′ 0.02828t 0.02828t e y + 0.02828e y(t) = 3e 

Integrate ∫ ∫ ( ) 
0.02828t ′ 0.02828t 0.02828tdt e y + 0.02828e y(t) dt = 3e 

3 0.02828t 0.02828t e y = e + C 
0.02828 

Solve for y(t) to get 
3 

+ Ce−0.02828t y = 
0.02828 

Apply the initial condition y(0) = 200 = 3 + C so C = 93.9 and our final answer is 
0.02828 

3 −0.02828t y = + 93.9e 
0.02828 
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Example 2.4.3. Suppose that 50 mg of a radioactive substance, having a half-life of 3 years, 

is initially present. More of this material is to be added at a constant rate so that 100 mg of 

the substance is present at the end of 2 years. At what constant rate must this radioactive 

material be added? 
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Example 2.4.4. An art dealer claims that a painting he is selling is a 400-year old original. 

A pigment in the painting contains white lead 210Pb, a radioactive isotope having a half-life 

of 22 years. Careful measurements indicate that 97.5% of the original amount of 210Pb has 

disintegrated. Using the fact the rate of decay of such a substance is directly proportional 

to the amount of substance present at the time, determine the actual age of the painting 
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2.5 First Order Nonlinear Differential Equations 

Given the initial value problem y ′ = f(t, y), y(t0) = y0 several questions arise: 

1. Under what circumstances can we be sure the equation has a solution passing through 

the given point? 

2. Is it possible for an equation to have more than one solution through an initial point? 

Or equivalently, if we find a solution passing through a point, can we be sure it is the 

only solution? 

Theorem 2.2. [Existence - Uniqueness Theorem II] Given the IVP y ′ = f(t, y) , y(t0) = y0, 

if and are both continuous on an open rectangle R 

, containing , the 

IVP is guaranteed to have a unique solution on . 

Example 2.5.1. Apply Theorem 2.2 to find the largest interval where the following have 

solutions: 

a) 2t + (1 + y2)y ′ = 0, y(1) = 1 

b) 3ty ′ + 2 cos y = 1, y(π/2) = −1 

c) (cos y)y ′ = 2 + tan t, y(0) = 0 
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Autonomous Differential Equations: 

First order autonomous differential equations have the form y ′ = f(y). If you have two 

different initial conditions for y ′ = f(y) you will get two different solutions: y1(t) and y2(t). 

Theorem 2.3 shows that the solution y2(t) is related to the solution y1(t) by: 

y2(t) = y1(t − c), 

where c is a constant. 

Theorem 2.3. Let the initial value problem y ′ = f(y), y(0) = y0 satisfy the conditions of 

Theorem 2.2 and let y1(t) be the unique solution, where the interval of existence for y1(t) is 

a < t < b, with a < 0 < b. 

Consider the initial value problem 

y ′ = f(y), y(t0) = y0 (2.7) 

Then the function y2(t) defined by y2(t) = y1(t− t0) is the unique solution of the initial value 

problem (2.7), and has an interval of existence 

t0 + a < t < t0 + b. 

Example 2.5.2. The solution of the initial value problem y ′ = f(y), y(0) = 8, is known to 

be y(t) = (4 + t)3/2 . Let ȳ(t) represent the solution of the initial value problem y ′ = f(y), 

y(t0) = 8. Suppose we know that ȳ(0) = 1. What is t0? 
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2.6 Separable Equations 

Separable means we can group the xs and ys separately. Usually solved by integration. 

2 x
Example 2.6.1. y ′ = 

y(1 + x3) 

Rewrite and integrate 

( ) ( ) 
Example 2.6.2. y ′ = cos 2 x cos 2 2y
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′ 2x 
Example 2.6.3. y = , y(2) = 0 

1 + 2y 

( ) 
Example 2.6.4. y ′ = 2 (1 + x) 1 + y 2

∫ 
dy −1 If you remember 

2 
dy = tan y then this is finished. Otherwise you can try a 

1 + y
substitution such as y = tan u and dy = sec2 u du 
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2.9 One Dimensional Motion with Air Resistance 

The equation of the forces acting on an object is ∑ 
F = ma 

If we have a falling object with air resistance then we can construct a differential equation 

to describe the motion. Usually the force of air resistance is proportional to the velocity (or 

the velocity squared). 

Example 2.9.1. Write an equation that models the motion of an object of mass m falling in 

the atmosphere near sea level. There are two forces acting on the object: Fg = mg the force 

of gravity and air resistance. For the purposes of this problem the force of the air resistance 

is proportional to the velocity. If γ is the drag coefficient then the force of the air resistance 

is γv. 

Here γ depends on the properties of the falling object. Here we will assume that positive 

acceleration/velocity/position is upward. 
dv 

m = −mg − γv, v(0) = v0 
dt 

m
dv 

= −mg − kv2 , v(t) > 0 , 
dt 

m
dv 

= −mg + kv2 , v(t) < 0 , 
dt 
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Example 2.9.2. A sky diver weighing 180 lbs falls vertically downward from an altitude 

of 5000 ft, and opens the parachute after 10 sec of free fall. Assume that the force of air 

resistance is 0.75|v| when the parachute is closed and 12|v| when the parachute is open, 

where the velocity is measured in ft/sec. 

a) Find the speed of the sky diver when the parachute opens. 

b) Find the distance fallen before the parachute opens. 

c) What is the limiting velocity after the parachute opens? 

d) Determine how long the sky diver is in the air after the parachute opens. 
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Example 2.9.3. A ball weighing 0.75 lb. is thrown vertically upward from a point 6 feet 

above the ground with an initial velocity of 20 feet per second. As it rises, it is acted on by 

air resistance equal to v/64 lbs. How high will the ball rise? 
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One-Dimensional Dynamics with Distance as the Independent Variable 

dv dv dx dv 
= = v 

dt dx dt dx 

Using this formula we can change an equation from being velocity as a function of time 

to velocity as a function of distance. 

Example 2.9.4. A boat of mass m is pushed away from a dock in the positive x direction. 

The only horizontal force acting on the boat is a drag force that we assume is proportional 

to the boats velocity. The velocity at the initial position x0 = 0 is v0 > 0. The initial time 

is t0 = 0. Find the velocity of when the boat has position x1 > 0. 

Example 2.9.5. A boat of mass m is pushed away from a dock in the positive x direction. 

The only horizontal force acting on the boat is a drag force that we assume is proportional to 

the square of the boats velocity. The velocity at the initial position is v0. Find the velocity 

of the boat when it is a distance d from the dock. 
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2.10 Euler’s Method (Tangent Lines) 

Eulers method is a numerical approximation to a differential equation using tangent lines. 

This method is easy to implement because we know that the slope of the line is y and we 

have a starting point (x0, y0). 

Recall (from Algebra I): The equation of a line using the point slope formula. If m = slope 

and (x0, y0) = a point then the equation of the line is given by: 

y − y0 = m(x − x0) 

or 

y = y0 + m(x − x0) 

If we start with a differential equation initial value problem how does this apply? Start with 

the IVP: 
dy 

= f(t, y); y(t0) = y0 
dx 

then f(t, y) = slope and (t0, y0) = point. 

We can approximate the solutions near that point by a straight line approximation: 

y = y0 + f(t0, y0)(t − t0) 

Figure 1: A tangent line approximation 
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As long as we stay close to (t0, y0) this approximation is good, however, we would like 

to be able to approximate the value of y at any time t. To do this we will find a linear 

approximation at the point t1 which is close to t0 and then, using that point, we will find an 

approximation for t2 which is close to t1 and so on. We still dont know the function y(t) so 

we dont know the y value at t1 but we can assume that if we use our linear approximation 

at (t0, y0) this point will be close enough to the actual value of the function. 

We are going to use the linear approximation to calculate the new y-value using the slope 
dy 

= f(t0, y0). Then the new y-value is y1 = y0 + f(t0, y0)(t1 − t0). 
dx 

Using this new point (t1, y1) we can approximate the solutions near (t1, y1) using the line: 

y = y1 + f(t1, y1)(t − t1). 

To find another point we use t2 to get y2 = y1 + f(t1, y1)(t2 − t1). In general we can find the 

point (tn+1, yn+1) by the following formula: 

yn+1 = yn + f(tn, yn)(tn+1 − tn) 

An if we let the difference tn+1 − tn = h always be constant (h) then the formula reduces to: 

yn+1 = yn + f(tn, yn)h (2.8) 

The algorithm for the Euler Method is as follows: 

Step 1: Define f(t, y) 

Step 2: Input initial values of t0 and y0 

Step 3: Input step size h and the number of steps n. 

Step 4: Output t = t0 and y = y0 

Step 5: For j from 1 to n Do 
k1 = f(t, y) 

Step 6: y = y + h ∗ k1 

t = t + h 
Step 7: Output t and y. 

Step 8: End 
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Example 2.10.1. Using the Euler method with h = 0.1 find approximate values to the 

solution of y ′ = 3 + t − y at t = 0.1, 0.2, 0.3 and 0.4. 
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