Section 1.9 Monday, September 12, 2022 1:42 PM

is the additive identity O + 7 = 7is the multiplicative identity I(7) = 7

1.9 The Matrix of a Linear Transformation

Definition 1.14. The **identity matrix** I_n in the $n \times n$ matrix with 1's on the main diagonal

and zeros everywhere each
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A basis is a minimal spanning set. (a more detailed definition shows up later)

The Standard Basis for \mathbb{R}^n is the set of vectors $e_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$ where the 1 1 ith position is in the i^{th} position.

If you know what a transformation does to the basis elements you know what it does to all

$$T(c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + \dots + c_n\mathbf{e}_n) = c_1T(\mathbf{e}_1) + c_2T(\mathbf{e}_2) + \dots + c_nT(\mathbf{e}_n)$$

Example 1.9.1. For \mathbb{R}^2 the standard basis is $B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$. If $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ then

Example 1.9.1. For
$$\mathbb{R}^2$$
 the standard basis is $B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$. If $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ then
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_2 \right\}$$
Use the definition to write $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} \times T + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \times T$

$$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

2 basis matrix A that has the same mapping.

$$T = \begin{bmatrix} 3 & -3 \\ 4 & 2 \\ 5 & 5 \\ 1 & -7 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 1 \end{bmatrix} \begin{pmatrix} -3 \\ 2 \\ 5 \\ -7 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 5 \\ 1 \end{pmatrix}$$

T(e)

Chapter 1 Notes, Linear Algebra 5e La

Example 1.9.3. Assume that T is a linear transformation. Find the standard matrix of T where T first performs a horizontal shear that transforms e_2 into $e_2 + 12e_1$ (leaving e_1 unchanged) and then reflects points through the line $x_2 = -x_1$.

$$\Gamma(e_{2}) \neq \frac{-1}{-12}$$

Chalinta Tilei = e,

 $T_{1}(ez) = ez + 12 e_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 12 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e1=(1)

T(e2) (-12)

One-to-one and Onto mappings

Definition 1.15. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n

A <u>one-to-one</u> transformation is a transformation where each x in the domain is mapped to exactly one element in the range. In other words, $x \longmapsto Ax$ is a unique map.

Example 1.9.4.
$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}$$
 is not a one-to-one map because the vector $x = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix} t$ maps to $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$. (see Example 1.8.4) $A \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

one-to-one and onto theorems

Theorem 1.9. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- 1. T is one-to-one if and only if the equation T(x)=0 has only the trivial solution.
- 2. T is one-to-one if and only if the equation Ax = 0 has only the trivial solution.
- 3. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- 4. T is one-to-one if and only if the columns of A are linearly independent.

T(ez)=(-1z)

Y=x² x=² y=y

Domain IR

Range yz O

Not conto the real

rumbers

One-to-one (1-to-())

y's are unique

Example 1.9.5. $T(x): \mathbb{R}^3 \to \mathbb{R}^2$ is defined by the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Show that the

transformation is **onto** \mathbb{R}^2 . (Hint: Need to show that you can get to any vector in \mathbb{R}^2 (what does that look like?) from some vector in \mathbb{R}^3 (what does that look like?)).

(42) Vector in 123

= (y) = omy vector

= (y2) = omy vector

Example 1.9.6. $T(x): \mathbb{R}^3 \to \mathbb{R}^2$ is defined by the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Show that the transformation is **NOT** one-to-one. (Hint: Need to show that you can get to some vector in \mathbb{R}^2 from multiple vectors in \mathbb{R}^3 (what does that look like?)).

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

two different imputs give some output not 1 to 1

Example 1.9.7. Show that T is a linear transformation by finding a matrix that implements the

mappings

