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A basis is a minimal spanning set. (a more detailed definition shows up later). P

The Standard Basis for B" is the set of vectors e; = [{}
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If vou know what a transformation does to the basis elements yvou know what it does to all (
% vectors. d
/7 Teier + coea + - + enen)= e1T(e1) + eT(ea) + -+ - + ¢, T(en) é
S S — — - Sm— v,

. 1 (N [ \_>
Example 1.9.1. For B? the standard basis is 5 = . LI & B2 then
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then reflects points through the line ry = —x.
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One-to-one and Onto mappi

Definition 1.15. A mapping T : B" — R™ is said to be onto E™ if each b in E™ is the
image of at least one r in RB" =

A one-to-one transformation is a transformation where each z in the domain is mapped

to exactly one element in the range. In other words, @ — Ax is a unique map.

3 -3
=5 =7

- |r
Example 1.9.4. 4 = is not a one-to-one map because the vector & —21t (_K
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one-to-one and onto the

Theorem 1.9, Let T : R" — R™ be a linear transformation, and let A be the standard
matrix for T Then:

Cree vorralles
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1. T is one-to-one if and only if the equation T(x) = 0 has only the trivial solution.
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2. T is one-to-one if and only if the equation Az = 0 has only the trivial solution.

3. T maps R™ onto B™ if and only if the columns of A span BE™.

—
4. T is one-to-one if and only if the columns of A are linearly independent.
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transformation is onto B2 (Hint: Need to show that you can get to any vector in B (what does
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that look like?) from some vector in B (what does that look like?)). %
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Example 1.9.5. T{r): B* — E? is defined by the matrix A = D ] Show that the
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Example 1.9.6. T(r): B* — E? is defined by the matrix A = 01 [}. Show that the
] ]

transformation is NOT one-to-one. (Hint: Need to show that you can get to some vector in B?

from multiple vectors in B* (what does that look like?)).
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Example 1.9.7. Show that T iz a linear transformation by finding a matrix that implements the _
mappings \ 2 2 \-{ e Y M\i_yrp_s e ‘]L{’kl \/W
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