Chapter 1 Notes, Linear Algebra 5e Lay

1:45 PM

Chalmeta

1.8 Introduction to Linear Transformations

Ax = b is a matrix equation. We can also think of the matrix A as doing something to the vector x. We say that A "acts" on x by multiplication. This produces a new vector Ax.

Definition 1.12. A Transformation (or Function or Mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m . The set \mathbb{R}^n is called the **Domain** of T, and \mathbb{R}^m is called the **Codomain** of T. The notation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 the codomain is \mathbb{R}^m .

alled the **image** of x . The set of all images is the **Range**

indicates that the domain of T is \mathbb{R}^n and the codomain is $\mathbb{R}^m.$

For x in \mathbb{R}^n , the vector T(x) in \mathbb{R}^m is called the **image** of x. The set of all images is the **Range** motrix of T.

The transformation T(x) + Ax is sometimes written as $x \mapsto Ax$ and

Start the domain is \mathbb{R}^n () maps to "

Example 1.8.1. Given
$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$
, $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

1. Plot the triangle with vertices x_1, x_2, x_3 . 2. Plot the triangle with vertices Ax_1, Ax_2, Ax_3 .

23

Matrix multiplication. $A = [a, a_2 ... a_n]$ columns of A are a_i Nector $b = \begin{bmatrix} b_i \\ b_n \end{bmatrix}$ $Ab=a_1b_1+a_2b_2+...+a_nb_n$

$$Ab = a_1b_1 + a_2b_2 + ... + a_nb_n = \begin{cases}
1 & 2 & 3 \\
4 & 5 & 6
\end{cases} \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 3 \\
1 & 3$$

Chapter 1 Notes, Linear Algebra 5e Lay

Chalmeta

Definition 1.13. A transformation T is **Linear** if

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} in the domain of T:
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

$$T(0) = \bigcup_{T(c\mathbf{u} + d\mathbf{v}) = \mathbf{v}} T(c\mathbf{u}) + T(d\mathbf{v}) = \mathbf{v} T(u) + d T(v)$$

Example 1.8.2. Define T(x) = Ax where $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & -1 & 2 & 3 \end{bmatrix}$. Find the transformation $x \longmapsto Ax$

of
$$x = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
. What are the domain and codomain of A .

of
$$x = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
. What are the domain and codomain of A .

$$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} 0 + \begin{bmatrix} 2 \\ -1 \end{bmatrix} 1 + \begin{bmatrix} 3 \\ 2 \end{bmatrix} 2 + \begin{bmatrix} 4 \\ 3 \end{bmatrix} 3 + \begin{bmatrix} 2 \\ 12 \end{bmatrix}$$

Domain

$$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} 0 + \begin{bmatrix} 2 \\ -1 \end{bmatrix} 1 + \begin{bmatrix} 3 \\ 2 \end{bmatrix} 2 + \begin{bmatrix} 4 \\ 3 \end{bmatrix} 3 + \begin{bmatrix} 2 \\ 12 \end{bmatrix} 2 + \begin{bmatrix} 4 \\ 3 \end{bmatrix} 3 + \begin{bmatrix} 2 \\ 12 \end{bmatrix} 2 + \begin{bmatrix} 4 \\ 3 \end{bmatrix} 3 + \begin{bmatrix} 2 \\ 12 \end{bmatrix} 3 + \begin{bmatrix} 4 \\ 3 \end{bmatrix} 3 + \begin{bmatrix} 4 \\ 12 \end{bmatrix} 3 +$$

Example 1.8.3. Find all the vectors that map onto
$$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
 given the matrix transformation defined by $A = \begin{bmatrix} 1 & -5 & -7 \\ 2 & 7 & 5 \end{bmatrix}$. Need to solve $Ax = \begin{bmatrix} -2 \\ 2 & 7 \end{bmatrix}$

Example 1.8.3. Find all the vectors that map onto by
$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{vmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{vmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{vmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{vmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{vmatrix}$$
. Need to obve $Ax = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$\begin{vmatrix} 1 & -5 & -7 \\ -8 & -16 & -8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -5 & -7 \\ -8 & -16 & -8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -5 & -7 \\ -8 & -16 & -8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -5 & -7 \\ -8 & -16 & -8 \end{vmatrix}$$

$$-\frac{1}{8}R_{2}\left(\begin{array}{c|c}1 & -5 & -7 & -2\\0 & 1 & 2 & 1\end{array}\right)R_{1}+5R_{2}-R_{1}\left(\begin{array}{c|c}1 & 0 & 3 & 3\\0 & 1 & 2 & 1\end{array}\right)$$

$$X_{1} + 3X_{3} = 3$$
 $X_{2} + 2X_{3} = 1$
 $X_{2} = 3 - 3X_{3}$
 $X_{2} = 1 - 2X_{3}$
 $X_{3} = X_{3}$

25