Chapter 1 Notes, Linear Algebra 5e Lay

Chalmeta

1.5 Solution Sets of Linear Systems

Definition 1.10. A system of linear equations is said to be homogeneous if it can be written in the form Ax = 0. The **trivial solution** is the solution x = 0.

Theorem 1.3. The trivial solution is ALWAYS as solution to the homogeneous equation Ax = 0. The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation has at least

Example 1.5.1.
$$\begin{bmatrix} 1 & 0 & 4 \\ -3 & 1 & -6 \\ 0 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 4 & 0 \\ -3 & 1 & -6 & 0 \\ 0 & 2 & 12 & 0 \end{bmatrix} \xrightarrow{R_2 + 3R_1 - 7R_2} \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 6 & 0 \\ R_3 - 2R_2 - 7R_3 & 0 & 0 & 0 \end{bmatrix} \xleftarrow{K_2 + 6K_3} = 0$$

$$X_1 = -4 \times 3 = -4t$$

$$Y_2 = -6 \times 3 = -6t$$

$$Y_3 = 4$$

$$Y_3 = 4$$
Free variable

Free variable

Example 1.5.2. Write the general solution of $x_1 + 9x_2 - 4x_3 = 7$

$$X_{1} = 7 - 9X_{2} + 4X_{3} = 7 - 9t + 4$$
2 Free voriables
$$X_{2} = X_{2} = t$$

$$X_{3} = X_{3} = r$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -9 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$$
Constants

Nextor

Solution.

1.5.1 Nonhomogeneous solutions

Example 1.5.3. Describe all solutions of Ax = b where

$$A = \begin{bmatrix} 1 & 0 & 4 \\ -3 & 1 & -6 \\ 0 & 2 & 12 \end{bmatrix} \text{ and } \begin{bmatrix} b = \begin{bmatrix} 4 \\ -3 \\ 18 \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 4 & 4 \\ -3 & 1 & -6 & -3 \\ 0 & 2 & 12 & 18 \end{bmatrix} \xrightarrow{\text{REF}} \begin{bmatrix} 1 & 0 & 4 & 4 \\ 0 & 1 & 6 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A + 447 = 44$$

$$X_{1} = 4 - 44$$

$$\chi_1 + 4\chi_3 = 4$$
 $\chi_2 + 6\chi_3 = 9$

$$X_3 = X_3$$

$$X_1 = 4 - 4 t$$

$$x_2 = 9 - 6t$$

$$x_3 = 0 + t$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 7 \end{bmatrix} + \begin{bmatrix} -4 \\ -6 \\ 1 \end{bmatrix}$$
 Slope

Particular solution

Theorem 1.4. Suppose the equation Ax = b is consistent for some given b, and let p be a solution. Then the solution set of Ax = b is the set of all vectors of the from $w = p + v_h$ where v_h is any solution of the homogeneous equation Ax = 0.

aution { portiulor solution

$$y = 3x + 5$$

$$y-3x=5$$

$$y = 3x$$

y-3x=0

Some slope

Vector $\overrightarrow{Pg} = g - P = \begin{bmatrix} 0 \\ -2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$

Find a parametric equation of the line M through p and q for the given values of p and q. [Hint: M is parallel to the vector q - p shown in the figure.]

