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6.1 Inner Product, Length, and Orthogonality
6.1.1 Multiplying Vectors

There are two ways to multiply vectors u and v:
1. the cross product u× v. We will not be discussing cross products in this class.

2. the dot product u · v. The dot product is also called the inner product.
Inner Product

Definition 6.1. The inner product (or dot product) of two x× 1 vectors u and v

u =


u1

u2

...
un

 v =


v1
v2
...
vn


is the product u · v = uTv.

u · v =
[
u1 u2 · · · un

]

v1
v2
...
vn

 = u1v1 + u2v2 + · · ·+ unvn

IMPORTANT: Notice that when you take the dot product of two vectors you have a scalar
answer. The dot product is a single number.

Example 6.1.1. Find u · v for u =

12
3

 and v =

−1
2
−7



Properties of the Inner Product

Properties of the Inner Product: Let u, v, and w be vectors in Rn, and let c be a scalar.
Then

1. u · v = v · u
2. (u+ v) · w = u · w + v · w
3. (cu) · v = c(u · v) = u · (cv)
4. u · u ≥ 0, and u · u = 0 ⇔ u = 0

Properties 2 and 3 can be combined into

(c1u1 + · · ·+ cpup) · w = c1(u1 · w) + · · ·+ cp(up · w)
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6.1.2 Length of a Vector

Length of a Vector

Definition 6.2. The length (or norm) of a vector v is the nonnegative scalar ‖v‖ defined
by

‖v‖ =
√
v · v =

√
v21 + v22 + · · ·+ v2n, and ‖v‖2 = v · v

A unit vector is a vector of length 1.
If v is a vector the unit vector in the direction of v is v

‖v‖
.

The process of changing a vector v into a unit vector is called normalizing v.

x

y

θb

a

‖u‖ =
√
a2 + b2

u

Example 6.1.2. For v =< −1, 2,−7 >

1. Find the length of v.
2. Find a unit vector in the direction of v.
3. Write v as (magnitude) · (direction) where the direction is a unit vector.

Example 6.1.3. Find the dot product between u =< 12, 3,−5 > and v =< 2,−3, 3 >

Orthogonal Vectors

Definition 6.3. Two vectors u and v are orthogonal (perpendicular) to each other if
u · v = 0.

Theorem 6.1. Two vectors u and v are orthogonal if and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
(ie. the Pythagorean theorem is true)
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6.2 Orthogonal Sets
Orthogonal Sets

Definition 6.4. A set of vectors {v1, v2, . . . , vn} is an orthogonal set if each pair of distinct
vectors is orthogonal. ie:

vi · vj = 0 for each i 6= j

Definition 6.5. An orthogonal basis is a basis that is also an orthogonal set.

Definition 6.6. An orthonormal basis (set) is an orthogonal basis (set) of unit vectors
(length 1).

Theorem 6.2. Orthogonal sets are linearly independent.

Example 6.2.1. Show that the following vectors form an orthogonal set.

u1 =< 1,−2, 1 >, u2 =< 0, 1, 2 >, u3 =< −5,−2, 1 >

Example 6.2.2. Construct an orthonormal basis from

u1 =< 1,−2, 1 >, u2 =< 0, 1, 2 >, u3 =< −5,−2, 1 >

6.2.1 Orthogonal Projection of One Vector onto Another

Projection of One Vector onto Another.

Theorem 6.3. The angle θ between two vectors, u and v, can be calculated using the dot
product:

u · v = ‖u‖‖v‖ cos θ

cos θ =
u · v

‖u‖‖v‖

Definition 6.7. We can use the angle and the dot product to find the projection of v onto
u.

v̂ = projuv =

(
u · v
‖u‖2

)
u =

(u · v
u · u

)
u
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Example 6.2.3. Find the projection of v =

[
5
6

]
onto

1. u1 =

[
−2
1

]
and

2. u2 =

[
1
2

]
3. What is the sum of the two projections?

Orthogonal Basis

Theorem 6.4. Let {u1, u2, . . . , up} be an orthogonal basis for a subspace W of Rn. For each
y ∈ W , the weights in

y = c1u1 + c2u2 + · · ·+ cpup

are given by
ci =

ui · y
ui · ui

Note: The weights ci are the projections onto each vector in the orthogonal basis.

Example 6.2.4. Write y =

 6
1
−8

 as a linear combination of

u1 =

 1
−2
1

, u2 =

01
2

, u3 =

−5
−2
1


We showed in example 6.2.1 that this is an orthogonal basis.
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6.3 Orthogonal Projections
Recall: From section 6.2 we saw that we could project one vector ~v onto another vector ~u: proj~u~v.

Now we would like to project vector ~v onto a subspace W of Rn: v̂ = projW~v. ~v can be written as
a component in W (v̂) and a component perpendicular to W (z).

Definition 6.8. The space perpendicular to W = span{u1, u2, . . . , up} is called the orthogonal
complement of W and is written W⊥ (read ”W perpendicular” or simply ”W perp”). Note:
Rn = W +W⊥

Example 6.3.1. Show that W⊥ is a subspace of Rn.

Start with u ∈ W and show

1. zero vector (is 0 ∈ W⊥?)

2. closed under addition. (for v ∈ W⊥ and x ∈ W⊥ is v + x ∈ W⊥?)

3. all other properties inherited from Rn
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Orthogonal Basis

Theorem 6.5. Suppose {u1, u2, . . . , un} is an orthogonal basis for Rn and W =
{u1, u2, . . . , up} then any vector y ∈ Rn

y = c1u1 + c2u2 + · · ·+ cpup + cp+1up+1 + · · ·+ cnun

are given by
ci =

ui · y
ui · ui

Note: The weights ci are the projections onto each vector in the orthogonal basis.

Example 6.3.2. Find the orthogonal projection of y onto the subspace spanned by u1 and u2 where

y =

−1
4
3

, u1 =

11
0

, u2 =

−1
1
0


Find ŷ = projWy = c1u1 + c2u2
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Example 6.3.3. W is the subspace spanned by

u1 =

 1
3
−2

, u2 =

51
4

.

Write y =

13
5

 as a sum of a vector in W and a vector in W⊥ (ie. y = ŷ + z)
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Example 6.3.4. Find the closest point (ŷ) and the shortest distance (||z||) to ~y =


3
1
5
1

 in the

subspace

W = {u1, u2} =




3
1
−1
1

,


1
−1
1
−1


 .
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6.4 The Gram-Schmidt Process

The Gram-Schmidt Process is a technique by which, if you are given any basis for a subspace V,
you can calculate an orthogonal basis for that subspace. The key step in the Gram-Schmidt Process
is the calculation of the orthogonal projection of a vector v onto a subspace W , sometimes written
as v̂ = projWv:

Orthogonal Projection

Let {u1,u2, . . . ,up} be an orthogonal set of vectors in Rn and W be the subspace spanned by these
vectors. Let v be any vector in Rn.
The orthogonal projection of v onto W is given by

v̂ =
v · u1

u1 · u1

u1 +
v · u2

u2 · u2

u2 + · · ·+ v · up

up · up

up

Example 6.4.1. Let u1 =

 2
5
−1

, u2 =

−2
1
1

, and v =

12
3

 and W = Span{u1,u2}.

Find v̂ = projWv:
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The Gram-Schmidt Process

Let B = {v1,v2, . . . ,vp} be any linearly independent set of vectors and let V be the subspace
spanned by B. We’ll apply the Gram-Schmidt Process to find an orthogonal (or orthonormal) set
of vectors which spans V .

1. We leave the first vector completely unchanged for now. That is, w1 = v1.

2. To find the other vectors, we calculate the projection of vj onto the subspace spanned by
{w1, . . . ,wj−1},

v̂j =
vj ·w1

w1 ·w1

w1 +
vj ·w2

w2 ·w2

w2 + · · ·+ vj ·wj−1

wj−1 ·wj−1

wj−1

then set wj = vj − v̂j . (Optional: You may multiply wj by the lowest common denominator
of its components if that helps.)

3. The set {w1, . . . ,wp} is an orthogonal basis for W .

If you want an orthonormal basis for W then continue as follows:

4. Once the vectors {w1, . . . ,wp} have been computed, scale them to a length of 1: uj =
wj

||wj||

5. The set {u1, . . . ,up} is an orthonormal basis for V

Example 6.4.2. Find an orthonormal basis for for W = Span


04
2

,
 5

6
−7


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Example 6.4.3. Find an orthogonal basis for Col A where

A =


3 −5 1
1 1 1
−1 5 −2
3 −7 8

 ans =


3
1
−1
3

,


1
3
3
−1

,

−3
1
1
3


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Example 6.4.4. Find an orthogonal basis for

B = Span




1
−1
−1
1
1

,


2
1
4
−4
2

,


5
−4
−3
7
1


 ans =


1
−1
−1
1
1

,


3
0
3
−3
3

,


2
0
2
2
−2


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