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6.1 Inner Product, Length, and Orthogonality
6.1.1 Multiplying Vectors

There are two ways to multiply vectors v and v:

1. the cross product u x v. We will not be discussing cross products in this class.

2. the dot product u - v. The dot product is also called the inner product.

Inner Product

Definition 6.1. The inner product (or dot product) of two x x 1 vectors u and v
Uq U1
U2 U2
u=1 . v=
Up Un
is the product v - v = utv.
U1
U2
w-v=[w uy e wn) | | = wonuguy - gy,
Un
IMPORTANT: Notice that when you take the dot product of two vectors you have a scalar
answer. The dot product is a single number.
. J
1 -1
Example 6.1.1. Find v-v foru= |2| and v = | 2
3 -7

Properties of the Inner Product

Properties of the Inner Product: Let u, v, and w be vectors in R", and let ¢ be a scalar.
Then

Properties 2 and 3 can be combined into

(rur + -+ cpup) - w = c1(ug - w) + -+ + cp(up - w)
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6.1.2 Length of a Vector

Length of a Vector

Definition 6.2. The length (or norm) of a vector v is the nonnegative scalar ||v|| defined
by

o = Voo = fod 408+ 402, and ol =v-v

A unit vector is a vector of length 1.

v
If v is a vector the unit vector in the direction of v is W

v
The process of changing a vector v into a unit vector is called normalizing v.

u A

ul| = Va® + b2

Example 6.1.2. For v =< —1,2, -7 >

1. Find the length of v.
2. Find a unit vector in the direction of v.

3. Write v as (magnitude) - (direction) where the direction is a unit vector.

Example 6.1.3. Find the dot product between u =< 12,3, -5 > and v =< 2,-3,3 >

Orthogonal Vectors

Definition 6.3. Two vectors u and v are orthogonal (perpendicular) to each other if
u-v=0.

Theorem 6.1. Two vectors u and v are orthogonal if and only if ||u + v|* = |Jul|® + ||Jv|°.

(ie. the Pythagorean theorem is true)
. J
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6.2 Orthogonal Sets

Orthogonal Sets

Definition 6.4. A set of vectors {vy, vo,...,v,} is an orthogonal set if each pair of distinct
vectors is orthogonal. ie:
v;-v; =0 for each ¢ # j

Definition 6.5. An orthogonal basis is a basis that is also an orthogonal set.

Definition 6.6. An orthonormal basis (set) is an orthogonal basis (set) of unit vectors
(length 1).

Theorem 6.2. Orthogonal sets are linearly independent.
\_ J

Example 6.2.1. Show that the following vectors form an orthogonal set.

u =< 1,-2,1> uy=<0,1,2> wuz3=<-95-2,1>

Example 6.2.2. Construct an orthonormal basis from

up =< 1,-2,1> uy=<0,1,2> wuz3=<-95,—-2,1>

6.2.1 Orthogonal Projection of One Vector onto Another

Projection of One Vector onto Another.

Theorem 6.3. The angle 6 between two vectors, u and v, can be calculated using the dot
product:
u-v = [Jull[[v]| cos
u-v

cosf =
[ullf[v]l

Definition 6.7. We can use the angle and the dot product to find the projection of v onto

u.
. ) (uv) (uv)
U = proj,, v = Uu=\——Ju

PRl T N
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5] onto

Example 6.2.3. Find the projection of v = [6

1. uy = [_12} and

2 =[]

3. What is the sum of the two projections?

Orthogonal Basis

Theorem 6.4. Let {uy,us, ..., u,} be an orthogonal basis for a subspace W of R". For each
y € W, the weights in
Y =cCclu + Cug + -+ + Cply

are given by

Ui - Y
G, —
Note: The weights ¢; are the projections onto each vector in the orthogonal basis.
\_ J
6
Example 6.2.4. Write y = | 1 | as a linear combination of
-8
1 0 -5
Uy = —2, Ug = 1, Uz = -2
1 2 1

We showed in example 6.2.1 that this is an orthogonal basis.
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6.3 Orthogonal Projections

Recall: From section 6.2 we saw that we could project one vector ¥ onto another vector u: proj;v.

Now we would like to project vector ¢ onto a subspace W of R™: © = projy,v. ¥ can be written as
a component in W (0) and a component perpendicular to W (z).

Definition 6.8. The space perpendicular to W = span{u,us,...,u,} is called the orthogonal
complement of W and is written W+ (read "W perpendicular” or simply "W perp”). Note:
R® =W + W+

Example 6.3.1. Show that W+ is a subspace of R™.

Start with v € W and show
1. zero vector (is 0 € W+7?)
2. closed under addition. (for v € W+ and z € Wt is v +x € W+7)

3. all other properties inherited from R"
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Orthogonal Basis

Theorem 6.5. Suppose {uj,us,...,u,} is an orthogonal basis for R" and W =
{u1,us,...,u,} then any vector y € R"

Y =cup + Cug + - - - + Uy + Cpr1Upr1 + - -+ CrUy

are given by
Ui -y

C;, =

Note: The weights ¢; are the projections onto each vector in the orthogonal basis.
\_ J

Example 6.3.2. Find the orthogonal projection of y onto the subspace spanned by u; and us where

-1 1 -1
Y= 4 ) Uy = 1 5 Uy = 1
3 0 0

Find § = projyy = cius + coug
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Example 6.3.3. W is the subspace spanned by

1 5)
Uy = 3 5 Ug = 1
—2 4
1
Write y = | 3| as a sum of a vector in W and a vector in W+ (ie. y = ¢ + 2)
5}
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3
Example 6.3.4. Find the closest point () and the shortest distance (||z||) to ¥ = é in the
1
subspace
3 1
1 -1
W = {u17 UZ} - 1]’ 1
1 —1
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6.4 The Gram-Schmidt Process

The Gram-Schmidt Process is a technique by which, if you are given any basis for a subspace V,
you can calculate an orthogonal basis for that subspace. The key step in the Gram-Schmidt Process
is the calculation of the orthogonal projection of a vector v onto a subspace W, sometimes written
as V = projy,v:

Orthogonal Projection

Let {u;, uy,...,u,} be an orthogonal set of vectors in R™ and W be the subspace spanned by these
vectors. Let v be any vector in R"™.
The orthogonal projection of v onto W is given by

. veu V- Uy v-u,
V= u; + up o+ -4 u,
u; -y Uo - U2 u, - u,
2 —2 1
Example 6.4.1. Let uy = | 5 |, ug= | 1 |,and v= [2| and W = Span{u;, us}.
—1 1 3

Find v = projy,v:

10
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The Gram-Schmidt Process

Let B = {vy,va,...,V,} be any linearly independent set of vectors and let V' be the subspace
spanned by B. We'll apply the Gram-Schmidt Process to find an orthogonal (or orthonormal) set
of vectors which spans V.

1. We leave the first vector completely unchanged for now. That is, w; = vy.

2. To find the other vectors, we calculate the projection of v; onto the subspace spanned by
{Wla e 7Wj,1},
N Vj * W1 Vj - Wo Vj : Wj,1

V; = Wi + W2—|—--'+—Wj_1
Wi W Wo - Wy Wi_1--W;1

then set w; = v; —v; . (Optional: You may multiply w; by the lowest common denominator
of its components if that helps.)

3. The set {wy,...,w,} is an orthogonal basis for 1.

If you want an orthonormal basis for W then continue as follows:

4. Once the vectors {wy, ..., w,} have been computed, scale them to a length of 1: u; = ||W]||
Wi
5. The set {uy,...,u,} is an orthonormal basis for V'
0 5
Example 6.4.2. Find an orthonormal basis for for W = Span < 4], | 6
21 |=7

11
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Example 6.4.3. Find an orthogonal basis for Col A where

3 -5 1 3 17 -3
1 1 1 3 1
A=\11 5 ams=1 411311
3 -7 8 3| [=1]| | 3

12
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Example 6.4.4. Find an orthogonal basis for

1 2 )
—1 1 —4
B =Span< |—1|,| 4|, |3
1 —4 7
1 2 1

13
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