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2.1 Operations with Matrices

• Addition and Subtraction

• Multiplication by a scalar

• Multiplication by another matrix

2.1.1 Addition and Subtraction

Q. What does it mean for two matrices to be equal?

A. It means they are the same size and have the EXACT same entries.

We can only add and subtract matrices that are the same size.

Q. How do we add matrices?

A. We add corresponding entries.[
a b
c d

]
+

[
e f
g h

]
=

[
(a+ e) (b+ f)
(c+ g) (d+ h)

]

Example 2.1.1.

 3 2
−1 −1
0 3

+

 −2 3
1 −1
2 −2

 =

What about standard addition properties? Matrix addition is:

1. Commutative: A+B = B + A.

2. Associative: (A+B) + C = A+ (B + C)

Definition 2.1. The Zero Matrix is a matrix with all entries zero. We often use 0 to represent
it.

Example 2.1.2. [
1 2
3 4

]
+ 0 =

[
1 2
3 4

]
[
1 2 3 4

]
+ 0 =

[
1 2 3 4

]
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2.1.2 Multiplication by a scalar

Multiply every entry in the matrix by the number.

Example 2.1.3.
5

[
−7 3 0 9
4 −5 6 2

]
=

[
5(−7) 5(3) 5(0) 5(9)
5(4) 5(−5) 5(6) 5(2)

]

Example 2.1.4. A =

[
3 2 0
−1 4 −6

]
B =

[
5 −2 7
1 3 −9

]
Find −2A− B and 4B − A

2.1.3 Multiplication of two matrices

An n× 1 matrix multiplied by a 1× n matrix is the 1× 1 matrix given by:

[
a1 a2 · · · an

]


b1
b2
...
bn

 =
[
a1b1 + a2b2 + · · ·+ anbn

]

Example 2.1.5.
[
−1 0 3 2

] 
2
3
4
−1

 =
[
(−1)(2) + (0)(3) + (3)(4) + (2)(−1)

]
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Larger Matrices

If A is an n× p matrix and B is a p×m matrix then the matrix product of A and B, AB, is
an n×m matrix whose ith row and jth column entry is the real number obtained from multiplying
the ith of A by the jth column of B.

THE MUMBER OF COLUMNS OF A MUST BE THE SAME AS THE NUMBER OF ROWS
OF B.

Example 2.1.6.

 −1 1
2 3
1 0

[
−1 0 3 −2
1 2 2 0

]

=



[
−1 1

] [ −1
1

] [
−1 1

] [ 0
2

] [
−1 1

] [ 3
2

] [
−1 1

] [ −2
0

]
[
2 3

] [ −1
1

] [
2 3

] [ 0
2

] [
2 3

] [ 3
2

] [
2 3

] [ −2
0

]
[
1 0

] [ −1
1

] [
1 0

] [ 0
2

] [
1 0

] [ 3
2

] [
1 0

] [ −2
0

]



Example 2.1.7. A =

[
3 2 0
−1 4 −6

]
B =

[
5 −2
1 3

]
Find BA and AB
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Properties of Matrix Multiplication

Theorem 2.1. Let A be an m×n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A(BC) = (AB)C (associative law of multiplication)
b. A(B + C) = AB + AC (left distributive law)
c. (B + C)A = BA+ CA (right distributive law)
d. r(AB) = (rA)B = A(rB) for any scalar r

e. ImA = A = AIn (Identity for matrix multiplication)

Example 2.1.8. A =

[
2 −3
−4 6

]
B =

[
8 4
5 5

]
C =

[
5 −2
3 1

]
D =

[
15 9
10 6

]
Find AC, AB, BA and AD

5



Chapter 2 Notes, Linear Algebra 6e Lay Chalmeta

2.1.4 The Transpose of a Matrix

Definition 2.2. Give an m×n matrix A, the transpose of A is the n×m matrix, denoted by AT

whose columns are formed by the corresponding rows of A

Properties of Matrix Transpose

Theorem 2.2. Let A and B have sizes for which the indicated sums and products are defined.

a. (AT )T = AC

b. (A+B)T = AT +BT

c. For any scalar r, (rA)T = rAT

d. (AB)T = BTAT

Example 2.1.9. A =

[
1 −3
−2 4

]
x =

[
5
3

]
B =

[
1 −3 7
−2 4 −2

]
Find (Ax)T , xTAT , xxT , and xTx.

Can you calculate ATxT , (AB)T , ATBT , BTAT and, if so, what is the result?
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2.2 The Inverse of a Matrix
Recall: The Identity Matrix is a square matrix with 1’s along the main diagonal and zeros
everywhere else.

Example 2.2.1. I =

[
1 0
0 1

]
, I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


We call it the identity matrix because it behaves like 1 in multiplication.

Example 2.2.2.
[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

] [
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]

Example 2.2.3.
[
a b c
d e f

] 1 0 0
0 1 0
0 0 1

 =

[
a b c
d e f

]

2.2.1 Matrix Inverses

Definition 2.3. If M is a square matrix and if there exists M−1 such that

MM−1 = I and M−1M = I

then M−1 is the Multiplicative Inverse of M . We often simply call it ”The Inverse” of M .

Example 2.2.4. A =

[
2 3
1 2

]
and A−1 =

[
2 −3
−1 2

]
. Show that these are inverses of each other.

[
2 3
1 2

] [
2 −3
−1 2

]
=

NOT ALL SQUARE MATRICES HAVE INVERSES. For example
[
2 1
4 2

]
Q. How do we know if an inverse exists for [A] and how do we find one if it does?

A. We perform Gauss Jordan Elimination on the augmented matrix [ A | I ] until it looks like[
I | A−1

]
If a matrix does NOT have an inverse we call it a singular matrix.
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Example 2.2.5. A =

[
1 0
−3 1

]
Find A−1

Row reduce this matrix:[
1 0 1 0
−3 1 0 1

]

2 x 2 Matrix Inverse

Theorem 2.3. Let A =

[
a b
c d

]
and define the determinant of A as detA = ad− bc. If det

A 6= 0 then A is invertible and

A−1 =
1

detA

[
d −b
−c a

]
If det A = 0 the matrix is not invertible.

Example 2.2.6. A =

[
3 9
2 6

]
Find A−1
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Example 2.2.7. A =

 1 5 10
0 1 4
1 6 15

 Find A−1

Row reduce this matrix: 1 5 10 1 0 0
0 1 4 0 1 0
1 6 15 0 0 1



Example 2.2.8. M =

 3 −1 1
−1 1 0
1 0 1

 Find M−1 =

 1 1 −1
1 2 −1
−1 −1 2
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Solving a matrix equation

Suppose we have a system of equations

a1x1 + a2x2 + a3x3 = a4
b1x1 + b2x2 + b3x3 = b4
c1x1 + c2x2 + c3x3 = c4

where ai, bi, and ci are real numbers and x1, x2, x3 are variables. Then we can write the coefficient
matrix

A =

 a1 a2 a3
b1 b2 b3
c1 c2 c3


and (IF it exists) we can find the inverse matrix A−1.

The original system can be written in matrix form: a1 a2 a3
b1 b2 b3
c1 c2 c3


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

X

=

 a4
b4
c4


︸ ︷︷ ︸

b

and we end up with an equation of the form AX = b. If this were an algebraic equation where A
and b were numbers we could easily solve this by dividing on both sides by A. WE CAN’T divide
matrices.

What we can do with matrices is to multiply by the inverse of A. Then we get something that
looks like this

AX = b

A−1 [AX] = A−1 b

I X = A−1 b

X = A−1 b

The nice thing about solving an equation this way is that now we can easily solve many problems
that have the same A but different b with one simple matrix multiplication.
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Example 2.2.9. Solve
3x1 − x2 + x3 = 1

−x1 + x2 = 1
x1 + x3 = 1

by writing the equation in matrix form as AX = b and multiplying by A−1.

Example 2.2.10. Solve
3x1 − x2 + x3 = 1

−x1 + x2 = 2
x1 + x3 = −3

11



Chapter 2 Notes, Linear Algebra 6e Lay Chalmeta

Properties of Invertible Matrices

Theorem 2.4. Properties of Invertible Matrices

1. If A is an invertible matrix, then A−1 is invertible and

(A−1)−1 = A

2. If A and B are n × n invetrible matrices, then so is AB, and the inverse of AB is the
product of the inverses of A and B in reverse order:

(AB)−1 = B−1A−1

3. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose of
A−1:

(AT )−1 = (A−1)T

2.2.2 Elementary Matrices

Definition 2.4. An elementary matrix is one that is obtained by performing a single elementary
row operation on an identity matrix

Example 2.2.11. Find the product E1A and E2A and identify the corresponding row operation
where

E1 =

 0 0 1
0 1 0
1 0 0

 , E2 =

 1 0 0
0 1 4
0 0 1

 , and A =

 a b c
d e f
g h i



Invertible matrices are row equivalent to In

Theorem 2.5. An n× n matrix A is invertible if and only if A is row equivalent to In, and
in this case, any sequence of elementary row operations that reduces A to In also transforms
In into A−1
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2.3 Characterizations of Invertible Matrices
Characterizations of invertible matrices

Theorem 2.6. Let A be a square n×n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to In

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x 7→ Ax is one-to-one.

g. The equation Ax = b has at least one solution for each b in Rn.

h. The columns of A span Rn.

i. The linear transformation x 7→ Ax maps Rn onto Rn.

j. There is an n× n matrix C such that CA = I.

k. There is an n× n matrix D such that AD = I.

l. AT is an invertible matrix.

Example 2.3.1. All matrices in this example are n×n. Each part of the example is an implication
of the form If ”statement 1” then ”statement 2”. The implication is TRUE if ”statement 2” is
ALWAYS true whenever ”statement 1” happens. If there is a time when it is not true then it is
FALSE.

1. If the equation Ax = 0 has only the trivial solution, then A is row equivalent to In.

2. If the columns of A span Rn, then the columns are linearly independent.

3. If the equation Ax = 0 has a nontrivial solution, then A has fewer than n pivot positions.

4. If AT is not invertible, then A is not invertible.
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5. If there is an n× n matrix D suche that AD = I, then there is also and n× n matrix C such
that CA = I.

6. If the columns of A are linearly independent, then the columns of A span Rn.

7. If the equation Ax = b has at least one solution for each b ∈ Rn, then the solution is unique
for each b.

Invertible Transformations

Theorem 2.7. Let T : Rn → Rn be a linear transformation and let A be the standard matrix
for T . Then T is invertible if and only if A is an invertible matrix. In that case, the linear
transformation S given by S(x) = A−1x is the unique function satisfying T (S(x)) = x and
S(T (x)) = x.

Example 2.3.2. T is a linear transformation from R2 into R2. Show that T is invertible and find
a formula for T−1.

T (x1, x2) = (−5x1 + 9x2, 4x1 − 7x2)
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