Understand these concepts from Chapters 5 and 6:

1. Identify whether a set of vectors forms a basis for a set.
2. Know that the dimension of a vector space is equal to the number of vectors in its basis.
3. Know what the rank and nullity of a matrix are.
4. What eigenvalues and eigenvectors represent. Solutions to $A x=\lambda x$
5. How to calculate the eigenvalues of a small matrix $(2 \times 2$ or $3 \times 3)$ by hand.
6. How to calculate the eigenvectors of a matrix.
7. What the algebraic multiplicity of an eigenvalue is.
8. Chapter 5, Theorem 2: If $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ are eigenvectors which correspond to distinct eigenvalues, then the set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent.
9. How to write the characteristic equation of a matrix and what it is used for.
10. How to diagonalize a matrix. When would diagonalization be advantageous?
11. How to add, subtract, and multiply complex numbers.
12. How to find the complex eigenvalues and eigenvectors of a matrix.
13. Compute the dot product of a pair of vectors.
14. Compute the norm of a vector.
15. Determine the angle between a pair of vectors.
16. Identify orthogonal vectors and sets.
17. Find the projection of a vector onto a subspace.
18. Find the shortest distance from a vector to subspace.
19. Given an orthogonal basis $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ for a subspace W write vector $y \in W$ as $y=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{r} u_{r}$
20. Use the Gram-Schmidt process to construct an orthonormal basis for subspace W.

Practice Problems

1. Identify whether the following statements are true or false. If a statement is false, give an explanation why.
(a) An $n \times n$ matrix has n eigenvalues.
(b) $\frac{6-12 i}{2+3 i}=3-4 i$
(c) If A is similar to the identity matrix, then $\operatorname{det} A=0$.
(d) If x is an eigenvector of A, then the line through the origin and x passes through $A x$.
(e) If B and C are bases for the same vector space V, then B and C contain the same number of vectors.
(f) If u and v are in \mathbb{R}^{n}, then $u \cdot v=v \cdot u$.
(g) A is a diagonalizable matrix if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
2. You are given that

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], x_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], P=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right], D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -4
\end{array}\right]
$$

and $A=P D P^{-1}$. Then $A^{2} x_{2}=$
(a) $\left[\begin{array}{c}25 \\ 0 \\ 50\end{array}\right]$
(b) $\left[\begin{array}{c}25 \\ 0 \\ 100\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ 0 \\ -8\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(e) $\left[\begin{array}{c}5 \\ 0 \\ 20\end{array}\right]$
3. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}-4 & 6 \\ -1 & 1\end{array}\right]$
4. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}-3 & 4 \\ 3 & 8\end{array}\right]$
5. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}3 & -5 \\ 9 & 3\end{array}\right]$
6. Let $A=\left[\begin{array}{ccc}4 & 3 & 2 \\ 2 & 9 & 4 \\ -1 & -3 & 1\end{array}\right]$. The eigenvalues of A are $\lambda_{1}=3$ and $\lambda_{2}=8$. Find an eigenbasis for each eigenvalue.
7. The 3×3 matrix A has eigenvalues $\lambda_{1}=3, \lambda_{2}=-4, \lambda_{3}=1$, with corresponding eigenvectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Write A in the form $P D P^{-1}$, where D is a diagonal matrix.
8. Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$. Which of the following vectors is orthogonal to the column space of A ?
(a) $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$
(e) Since the second row is a multiple of the third row, $\operatorname{Col} A$ is undefined.
9. Let $A=\left[\begin{array}{ccc}4 & 2 & -3 \\ 3 & 4 & 1 \\ 4 & 1 & 5\end{array}\right]$. Then $\lambda=3$ is an eigenvalue corresponding to the eigenvector $v=$ $\left[\begin{array}{c}1 \\ -2 \\ a\end{array}\right]$. Find the value of a.
10. Let u, v be vectors in \mathbb{R}^{n} with θ the angle between u and v. Then $\|u+v\|^{2}$ is equal to:
(a) $\|u\|^{2}\|v\|^{2} \cos \theta$
(b) $\|u\|^{2}+\|v\|^{2}$
(c) $\|u\|^{2}-\|v\|^{2}$
(d) $\|u\|^{2}+\|v\|^{2}+2\|u\|^{2}\|v\|^{2} \cos \theta$
(e) $\|u\|^{2}+\|v\|^{2}-2\|u\|^{2}\|v\|^{2} \cos \theta$
11. Let

$$
A=\left[\begin{array}{cccc}
5 & -1 & 3 & -1 \\
0 & 4 & h & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find h so that the eigenspace corresponding to the eigenvalue $\lambda=5$ is 2-dimensional.
12. Suppose the 2×2 matrix A has eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=3$ with eigenvectors v_{1} and v_{2}, respectively. If $u=5 v_{1}+v_{2}$, then $A^{2} u$ is equal to
(a) $25 v_{1}+v_{2}$
(b) $25 v_{1}+3 v_{2}$
(c) $80 v_{1}+9 v_{2}$
(d) $100 v_{1}+3 v_{2}$
(e) $400 v_{1}+9 v_{2}$
13. An $n \times n$ matrix B has characteristic polynomial $p(\lambda)=-\lambda(\lambda-3)^{3}(\lambda-2)^{2}(\lambda+1)$. Which of the following statements is FALSE?
(a) rank $B=6$.
(b) $\operatorname{det}(B)=0$.
(c) $\operatorname{det}\left(B^{T} B\right)=0$.
(d) B is invertible.
(e) $n=7$.
14. Given vectors $u=\left[\begin{array}{c}10 \\ 0 \\ 5\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$ find $u \cdot v$.
15. Find a unit vector in the direction of $v=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$
16. Find the distance between the two vectors. $u=(6,-12), v=(-12,12)$
17. Determine whether the set of vectors is orthogonal.

$$
\left[\begin{array}{l}
-2 \\
-4 \\
-2
\end{array}\right],\left[\begin{array}{c}
20 \\
0 \\
-20
\end{array}\right],\left[\begin{array}{l}
-20 \\
-20 \\
-20
\end{array}\right]
$$

18. Find the orthogonal projection of $y=\left[\begin{array}{c}-24 \\ 10\end{array}\right]$ onto $u=\left[\begin{array}{c}4 \\ 20\end{array}\right]$.
19. Let W be the subspace spanned by $u_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$. Write $y=\left[\begin{array}{c}19 \\ 3 \\ 11\end{array}\right]$ as the sum of a vector in W and a vector orthogonal to W. Find the closest point to y in the subspace W and the shortest distance.

Practice Problems Answers

1. Identify whether the following statements are true or false. If a statement is false, give an explanation why.
(a) True, including multiplicity.
(b) False.
(c) False, $\operatorname{det} A=1$.
(d) True.
(e) True
(f) True.
(g) True.
2. $\left[\begin{array}{c}25 \\ 0 \\ 50\end{array}\right]$
3. $E_{\lambda=-2}=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$ and $E_{\lambda=-1}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$
4. $E_{\lambda=9}=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ and $E_{\lambda=-4}=\left\{\left[\begin{array}{c}-4 \\ 1\end{array}\right]\right\}$
5. $E_{\lambda=3+3 i \sqrt{5}}=\left\{\left[\begin{array}{c}i \sqrt{5} \\ 3\end{array}\right]\right\}$
6. $E_{\lambda=3}=\left\{\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]\right\}$ and $E_{\lambda=8}=\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]\right\}$
7. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & -1 & 1\end{array}\right]$
8. $\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$
9. $a=-1$.
10. $\|u\|^{2}+\|v\|^{2}+2\|u\|^{2}\|v\|^{2} \cos \theta$
11. $h=3$
12. $80 v_{1}+9 v_{2}$
13. B is invertible is the False statement because $\lambda=0$ can only be an eigenvalue of a singular matrix.
14. $u \cdot v=15$.
15. unit vector $=\left[\begin{array}{c}2 / \sqrt{14} \\ 3 / \sqrt{14} \\ -1 / \sqrt{14}\end{array}\right]$
16. 30
17. No
18. $\operatorname{proj}_{u} y=\left[\begin{array}{l}1 \\ 5\end{array}\right]$.
19. $y=\left[\begin{array}{c}18 \\ 7 \\ 10\end{array}\right]+\left[\begin{array}{c}1 \\ -4 \\ 1\end{array}\right]$. Closest point $(18,7,10)$. Shortest distance $\sqrt{18}$.
