Understand these concepts from Chapters 2, 3 and 4:

1. What is a determinant?
2. Know what a cofactor is and how to use them to compute determinants.
3. How elementary row operations affect the determinant of a matrix (Theorem 3, p. 171).
4. How to combine row operations and cofactor expansion efficiently.
5. The connection between determinants and invertibility.
6. How to compute the area of a triangle (and other polygons) using determinants.
7. The equivalent conditions of the Invertible Matrix Theorem. (a) - (r)
8. The definition of a vector space.
9. The three criteria one has to check to see if a subset of \mathbb{R}^{n} is a subspace.
10. $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the set of all linear combinations $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$.
11. The span of a set of vectors in \mathbb{R}^{n} is always a subspace of \mathbb{R}^{n}.
12. Compute the null space of a matrix and express that null space as the span of a set of vectors.
13. Determine whether a vector is in the null space of a given matrix.
14. Compute the column space of a matrix and express that column space as the span of a set of vectors.
15. Understand that if A is the standard matrix of a linear transformation, Nul A is a subset of the domain, and $\operatorname{Col} A$ is the range.
16. Determine whether a set of vectors forms a basis for its span.
17. Compute a basis for $\operatorname{Nul} A$ and for $\operatorname{Col} A$.
18. Know that the dimension of a vector space is equal to the number of vectors in its basis.
19. Know what the rank and nullity of a matrix are.
20. Use the rank of the matrix to answer questions like those in the left-hand column of page 239.
21. Given a basis \mathcal{B}, and a vector x, find $[x]_{\mathcal{B}}$.
22. Given a basis \mathcal{B}, and a vector $[x]_{\mathcal{B}}$, find $[x]$.
23. Given a matrix A, construct a basis for Row $A\left(=\operatorname{Col} A^{T}\right)$ and find its dimension.

Practice Problems

1. Calculate the area of the parallelogram formed between the points $(0,3),(2,4),(5,2)$, and $(3,1)$.
2. The vector $\left[\begin{array}{c}a \\ b \\ 10 \\ 5\end{array}\right]$ is in the null space of $\left[\begin{array}{cccc}2 & 3 & 0 & 1 \\ 1 & 4 & 1 & 2\end{array}\right]$. Find the values of a and b.
3. (a) Calculate the determinant of

$$
B=\left[\begin{array}{ccccc}
0 & 4 & 0 & 1 & 0 \\
9 & 1 & 0 & 11 & 3 \\
3 & 6 & 0 & 8 & 0 \\
2 & 5 & 4 & 1 & 7 \\
0 & 2 & 0 & 1 & 0
\end{array}\right]
$$

by using cofactor expansion efficiently.
(b) Now that you have the determinant of B, what can you say about the determinant of the matrix C shown here:

$$
C=\left[\begin{array}{ccccc}
9 & 1 & 0 & 11 & 3 \\
0 & 12 & 0 & 3 & 0 \\
3 & 6 & 0 & 8 & 0 \\
2 & 5 & 4 & 1 & 7 \\
0 & 2 & 0 & 1 & 0
\end{array}\right]
$$

4. Suppose you knew that the columns of the 5×5 matrix A were linearly dependent. What can you say about the determinant of A ?
5. Show that the set of vectors $\left[\begin{array}{c}2 r+3 s \\ r-s \\ 5 r\end{array}\right]$ form a subspace of \mathbb{R}^{3}.
6. Show that the integer lattice \mathbb{Z}^{2}, which is the set of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ where x and y are whole integers, does not form a subspace of \mathbb{R}^{2}.
7. Suppose a 4×6 matrix A has rank 2 . Then
(a) $\operatorname{Nul} A$ is a \qquad -dimensional subspace of \mathbb{R}-.
(b) $\operatorname{Col} A$ is a ___dimensional subspace of \mathbb{R}-.
8. (a) What is the maximum rank of a 3×7 matrix?
(b) The 4×9 matrix A has a rank of 3 . What is its nullity?
9. If A is a 9×6 matrix with $\operatorname{rank} A=6$, what is the nullity of A ?
10. If A is a 4×5 matrix that is row equivalent to

$$
B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

what is the number of pivot positions that A has? What is the rank of A ? What is the nullity of A ? Can you name a basis for the row space of A ? Why might the first, fourth, and fifth columns of B fail to form a basis for the column space of A ?
11. If A is the matrix of a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{7}, and A has exactly three vectors in the basis of its null space, what is the dimension of the row space of A ?
12. If A is a 6×3 matrix, can A have a 4 dimensional row space? Can A have a 4 dimensional null space?
13. Let $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, so B is a basis for \mathbb{R}^{2}. Express the vector $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ as a coordinate vector relative to \mathcal{B} (that is, find $[x]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$).
14. Let $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, so B is a basis for \mathbb{R}^{2}. Given the coordinates of x in this basis: $c_{1}=3, c_{2}=3$, what are the coordinates of x in the standard basis.
15. Let A be an $n \times n$ invertible matrix. Label the following as true or false:
(a) $\operatorname{dim} \operatorname{col} A^{T}=n$
(b) If $A \sim B$, then B is invertible.
(c) The rows of A are linearly independent and span \mathbb{R}^{n}.
(d) The columns of A^{T} are linearly independent.
(e) $\operatorname{det} A^{T}=\operatorname{det} A$.
(f) If B contains exactly the same rows as A, but in a different order, then B is invertible.
(g) The transformation $T(x)=A x$ is both one-to-one and onto.
(h) The equation $A x=0$ has an infinite number of solutions.
(i) The reduced echelon form of A is an identity matrix.
(j) $\operatorname{Nul} A$ is a single point.
16. If the row space of A is a two-dimensional subspace of \mathbb{R}^{3}, is it possible to determine the number of rows of A ? How about the number of linearly independent rows of A ?
17. If A is an $n \times n$ matrix and $A \sim I$, then do we know the rank of A^{T} ?
18. Use a combination of row reduction and cofactor expansion to calculate det B where

$$
B=\left[\begin{array}{llll}
1 & 4 & 6 & 0 \\
4 & 2 & 3 & 0 \\
6 & 6 & 8 & 6 \\
5 & 3 & 5 & 3
\end{array}\right]
$$

19. If $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & 1 & 7 & 3\end{array}\right]$, find a basis for $\operatorname{Nul} A$ and $\operatorname{Col} A$.
20. Mark each statement TRUE or, FALSE and why.
(a) If A is a 2×2 matrix and $\operatorname{det} A=0$, then one column of A is a multiple of the other.
(b) If A is a 3×3 matrix, then $\operatorname{det} 5 A=5 \operatorname{det} A$.
(c) $\operatorname{det} A^{T} A \geq 0$.
(d) A plane in \mathbb{R}^{3} is a two-dimensional subspace of \mathbb{R}^{3}.
(e) If $\left\{v_{1}, \ldots, v_{n}\right\}$ are vectors in a vector space V, then $\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace of V.
(f) The set of pivot columns of a matrix is linearly independent.
(g) If A is a 3×5 matrix, then Nul A is a subspace of \mathbb{R}^{5}.
(h) If \mathcal{B} and \mathcal{C} are bases for the same vector space V, then \mathcal{B} and \mathcal{C} contain the same number of vectors.
(i) If A is a 3×9 matrix in echelon form, then rank $A=3$.

Practice Problems Answers

1. $\operatorname{det}\left[\begin{array}{cc}2 & 1 \\ 3 & -2\end{array}\right]=-7$, so the area is $|-7|=7$
2. $a=8$ and $b=-7$.
3. (a) $\operatorname{det} B=72$
(b) $\operatorname{det} C=-216$, Switch two rows (negative) and multiply one row by 3 (3 times larger)
4. $\operatorname{det} A=0$
5. $\left[\begin{array}{c}2 r+3 s \\ r-s \\ 5 r\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]\right\}$ and all spans are subspaces. Also satisfies closure, has the zero vector in it and has the standard multiplication and addition properties.
6. Let $x=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Then x is in \mathbb{Z}^{2}, but $\frac{1}{2} x$ is not, so \mathbb{Z}^{2} is not closed under scalar multiplication.
7. Suppose a 4×6 matrix A has rank 2 . Then
(a) $\mathrm{Nul} A$ is a 4-dimensional subspace of \mathbb{R}^{6}.
(b) $\operatorname{Col} A$ is a 2-dimensional subspace of \mathbb{R}^{4}.
8. (a) 3
(b) 6
9. 0
10. 3. 3. 2. Row $A=\left\{\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]\right\}$. Because you can only get zero in the last position from those columns.
1. A is 7×3, so it has 3 columns, and $3-3=0$ is the rank of A, so the dimension of the row space is 0 . A is matrix with all of its entries equal to zero.
2. No because the maximum number of pivot rows is $\min (6,3)$. No because the dimension of the null space can't be larger than the number of columns.
3. $[x]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$
4. $x=\left[\begin{array}{c}-3 \\ 6\end{array}\right]$.
5. Let A be an $n \times n$ invertible matrix. Label the following as true or false:
(a) true
(b) true
(c) true
(d) true
(e) true
(f) true
(g) true
(h) false
(i) true
(j) true
6. Not enough information to determine the number of rows of A but we do know that there are 2 linearly independent rows in A. For example both of these matrices form 2-dimensional subspaces of \mathbb{R}^{3}. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
7. A^{T} is invertible so by the invertible matrix theorem it has rank n
8. $\operatorname{det} B=84$
9. Nul $A=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$
$\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]\right\}$.
10. Mark each statement TRUE or, FALSE and why.
(a) TRUE
(b) FALSE $\operatorname{det} 5 A=5^{3} \operatorname{det} A$.
(c) TRUE
(d) FALSE, doesn't necessarily contain zero vector
(e) TRUE
(f) TRUE
(g) TRUE
(h) TRUE
(i) FALSE, could have row(s) of zeros. rank $A \leq 3$.
