Math 176 Calculus – Sec. 6.5: Average Value of a Function

I. Average Value of a Function
A. Defn: If \(f \) is integrable on \([a, b]\), its average (mean) value on \([a, b]\) is

\[
\bar{f}_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx
\]

B. EXAMPLE
Find the average value of \(f(x) = \sqrt{x} \) on \([0, 4]\).

II. Mean Value Theorem for Integral Calculus
A. The Mean Value Theorem for Definite Integrals (MVThm): If \(f \) is continuous on \([a, b]\), then at some point \(c \) in \([a, b]\),

\[
f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx
\]

B. EXAMPLE
Apply MVThm to the example above.

C. Geometric Interpretation of the MVThm
For positive functions \(f \), there is a number \(c \) such that the rectangle with base \([a, b]\) and height \(f(c) \) has the same area as the region under the graph of \(f \) from \(a \) to \(b \).
III. Additional Examples

1. Find the average value of \(y = \frac{x}{\sqrt{9 + x^2}} \) on \([0,4]\). Apply MVTh to this problem.

2. In a certain city the temperature (in °F) \(t \) hours after 9 a.m. was approximated by the function \(T(t) = 50 + 14\sin\left(\frac{\pi t}{12}\right) \). Find the average temperature during the period from 9 a.m. to 9 p.m.