I. Riemann Sums

A. Definition: Given $y = f(x)$: 1. Let f be defined on a closed interval $[a, b]$. 2. Partition $[a, b]$ into n subintervals $[x_{i-1}, x_i]$ of length $\Delta x_i = x_i - x_{i-1}$. Let P denote the partition $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. 3. Let $||P||$ be the length of the longest subinterval. 4. Choose a number x^*_i in each subinterval (x^*_i may be an endpt). 5. Form the Riemann Sum $S_P = \sum f(x^*_i)(\Delta x_i)$.

NOTE: 1. f does not have to be continuous nor nonnegative on $[a, b]$. Therefore, S_P does not necessarily represent an approximation to the area under a graph. 2. x^*_i need not be the same in each interval. 3. Δx_i need not be the same length. 4. Riemann Sums are used to approximate a given quantity. 5. To increase the accuracy of the sum, decrease the subinterval length; hence, increase the number of subintervals. 6. As the accuracy of the sum increases, Riemann Sum \to Definite Integral.

B. Examples

1. Finite Sums – finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x^*_i is chosen for each subinterval.

2. Given $y = x^2$ on $[1, 2]$. Partition $[1, 2]$ into the 4 subintervals: $[1, 1.3], [1.3, 1.5], [1.5, 1.6]$ & $[1.6, 2]$. Let $x_1 = 1, x_2 = 1.4, x_3 = 1.6, x_4 = 1.9$. Find the Riemann Sum using this information.

3. Repeat using 4 equal subintervals and x^*_i being the midpoint of each subinterval.
II. The Definite Integral

A. **Def**: If \(f \) is a continuous function defined for \(a \leq x \leq b \), we divide the interval \([a,b]\) into \(n \) subintervals of equal width \(\Delta x = \frac{b-a}{n} \). We let \(x_0 (=a) \), \(x_1 \), \(x_2 \), \ldots , \(x_n (=b) \) be the endpoints of these subintervals and we choose sample points \(x_1^*, x_2^*, \ldots , x_n^* \) in these subintervals, so \(x_i^* \) lies in the \(i \) th subinterval \([x_{i-1}, x_i]\). Then the definite integral of \(f \) from \(a \) to \(b \) is

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(f(x_i^*) \Delta x \right)
\]

NOTE: 1. The definite integral \(\int_a^b f(x) \, dx \) is a number; it does not depend on \(x \).

\[
\int_a^b f(x) \, dx = \int_a^b f(t) \, dt = \int_a^b f(r) \, dr
\]

2. Because we have assumed that \(f \) is continuous, it can be proved that the limit in the definition always exists and gives the same value no matter how the sample points \(x_i^* \) have been chosen.

3. \(\int_a^b f(x) \, dx \) gives the signed area of a region between the curve \(y=f(x) \) and the \(x \)-axis on \([a,b]\).

B. **Th**: All continuous fns are integrable, i.e., if a fn \(f \) is continuous on \([a,b]\), then its definite integral over \([a,b]\) exists.

C. Examples

1. Express the limit as a definite integral on the given interval

a. \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(6x_i - 3^{x_i} \right) \Delta x \); \([-2,3] = \)________________________

b. \(\lim_{n \to \infty} \sum_{i=1}^{n} \left[(x_i)^3 - 7 \right] \Delta x \); \([4,7] = \)________________________

c. \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(2 - \left(\frac{4i}{n} \right)^2 \left(\frac{4}{n} \right) \right) = \)________________________
2. Express the definite integrals as a limit similar to the style in example 1c above:
\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left\{ f(x^*_i) \Delta x \right\} ; \quad \text{where} \quad \Delta x = \frac{b-a}{n} \quad \text{and} \quad x^*_i \text{ is the right hand endpoint, i.e., } x^*_i = a + (\Delta x)i .
\]

a. \(\int_4^9 (x^2 - 2x + 3) \, dx \)

b. \(\int_1^4 (x^3 + x) \, dx \)

D. Evaluating Definite Integrals

1. **Approximating the Value of Definite Integrals**

In the previous section we used the area of rectangles \(\sum_{i=1}^{n} \left\{ f(x^*_i) \Delta x \right\} \) to approximate the area under a curve. We now know that the definite integral gives us the “signed” area between a curve and the x-axis. Therefore, we can use this method to approximate the definite integral. If we use midpoints as the \(x^*_i \) value in the definition of a Riemann sum, we call it the Midpoint Rule

a. **Midpoint Rule:** \(\int_a^b f(x) \, dx = \sum_{i=1}^{n} \left\{ f(\bar{x}_i) \Delta x \right\} = \Delta x [f(\bar{x}_1) + f(\bar{x}_2) + \ldots + f(\bar{x}_n)] \)

where \(\Delta x = \frac{b-a}{n} \) and \(\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) \) = midpoint of \([x_{i-1}, x_i] \)

b. **Example**

Use the Midpoints Rule with \(n=5 \) to approximate \(\int_1^2 \frac{1}{x} \, dx \)
2. Evaluating the Exact Value of a Definite Integral

a. Using geometry / area of a region to evaluate the exact value of a definite integral

Sometimes the only way to evaluate a definite integral is to use geometry, as in the first example.

1.) \[\int_{-5}^{5} \sqrt{25-x^2} \, dx \]

2.) \[\int_{0}^{5} (2-x) \, dx \]

3.) Use the graph of \(g \) below to evaluate \[\int_{0}^{5} g \, dx \]

b. Using the definition of the definite integral to evaluate the exact value of a definite integral

1.) Background

a.) Sigma Notation for Finite Sums

\[(1.) \quad \sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \ldots + a_n \]
(2.) Examples
(a.) \(\sum_{i=1}^{4} (i^3) = \)

(b.) \(\sum_{j=-2}^{3} (3j + 1) = \)

b.) Sum Formulas for Positive Integers

(1.) \(\sum_{i=1}^{n} i = n(n+1)/2 \)

(2.) \(\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6 \)

(3.) \(\sum_{i=1}^{n} i^3 = [n(n+1)/2]^2 \)

(4.) \(\sum_{i=1}^{n} i^4 = \)

c.) Algebra Rules for Finite Sums

(1.) Sum/Difference Rule: \(\sum_{k=1}^{n} (a_k \pm b_k) = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k \)

(2.) Constant Multiple Rule: \(\sum_{k=1}^{n} (ca_k) = c \sum_{k=1}^{n} a_k \), where \(c \) is a constant

d.) Examples

(1.) \(\sum_{k=1}^{10} k^2 - 3k + 2 = \)

(2.) \(\sum_{k=5}^{20} 4k^2 = \)
2. Evaluating a definite integral using the limit definition.

a.) In the definition of the definite integral, \(\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left[f(x_i^*) \right] \Delta x \); where \(\Delta x = \frac{b-a}{n} \) we will take \(x_i^* \) to be the right hand endpoint, i.e., \(x_i^* = a + \Delta x i \).

b.) Example

(1.) Evaluate the definite integral using the limit definition.

\[\int_{-1}^{2} (x^2 + x + 1) \, dx \]
E. Properties of the Definite Integrals

1. Properties

 a. \(\int_{a}^{b} f(x) \, dx = 0 \)

 b. \(\int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx \)

 c. \(\int_{a}^{b} c \, dx = c \, (b-a) \); \(c \) = constant fn.

 d. \(\int_{a}^{b} k \, f(x) \, dx = k \int_{a}^{b} f(x) \, dx \)

 e. \(\int_{a}^{b} [f(x) \pm g(x)] \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx \)

 f. \(\int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx \)

2. Examples

 Given that \(\int_{1}^{2} f(x) \, dx = 7 \), \(\int_{3}^{1} f(x) \, dx = 5 \), \(\int_{-2}^{2} g(x) \, dx = 3 \) \& \(\int_{2}^{3} g(x) \, dx = -8 \),

 evaluate the following:

 a. \(\int_{-2}^{3} f(x) \, dx = \)

 b. \(\int_{-2}^{3} f(x) \, dx = \)

 c. \(\int_{-2}^{3} -6g(x) \, dx = \)

 d. \(\int_{-2}^{3} [2f(x) + 4g(x)] \, dx = \)

 e. \(\int_{-1}^{2} 5 \, dx \)
F. Comparison Properties of the Integral

1. The Comparison Properties
 a. If \(f(x) \geq 0 \) on \([a,b]\), \(\Rightarrow \int_a^b f(x) \, dx \geq 0 \).

 b. If \(f(x) \geq g(x) \) on \([a,b]\), \(\Rightarrow \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx \).

 c. Max-Min Inequality: If \(M \) & \(m \) are the maximum and the minimum values of \(f \) on \([a,b]\), then \(m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a) \).

2. Example
 Show that the value of \(\int_0^2 \sin(x^2) \, dx \) cannot be 4.