

Example 5.1.1. Suppose f(x) = 3 + 2x + 1 and g(x) = x - 1 then find a) $(\underline{f \circ g)(x)} = f(\underline{g(x)}) = f(\underline{x-1}) = (x-1)^3 + 2(x-1) + 1$ $\int = \chi^{3} + 3\chi^{2}(-1) + 3\chi(-1)^{2} - 1 + 2\chi - 2 + 1$ b) $(g \circ f)(x) = g(f(x)) = g(x^3 + 2x + 1)$ $(y + a)^2 = 1x^2 + 2ax + 1a^2$ $(x+a)^3 = (x^3 + 3x^2 + 3x^2 +)a^3$ $= x^3 + 2X + 1 - 1$ (x +a) 1x4 + 4x3 + 6x2a2 + 4x03+ 124 $= x^3 + 2x$

$$\overline{c}(f \circ f)(x) = f(f(x)) = f(x^3 + 2x + 1)$$

$$=(\chi^3+2\chi+1)^3+2(\chi^3+2\chi+1)+1$$

Example 5.1.2. Find (a) $(f \circ g)(x)$, (b) $(g \circ f)(x)$ and (c) the domain of each for $f(x) = \sqrt{x-4}$ and $g(x) = x^2$. $o)(fog)(x) = f(g(x)) = f(x^2) =$ $\mathcal{D}(302)(x) = 3(2(x)) = 3(2x-1) =$ For (a) Domain of g(x) is IR Pomain x²-4>0

Paritive Domain of f(x) is Domain of (gof) (x) is $\times 24$

Example 5.1.3. Find (a) $(f \circ g)(x)$, (b) $(g \circ f)(x)$ and (c) the domain

$$(\alpha) \qquad f(x) = \frac{1}{x+y} \text{ and } g(x) = \frac{2}{x} + 2 \qquad x \neq 0$$

$$(f \circ g)(x) = f(g(x)) = \frac{2}{(x+z) - y} = \frac{2}{(x+z) - 2x} \cdot \frac{x}{x} = \frac{1}{2 - 2x}$$

$$(b)_{(g \circ f)(x)} = g(f(x)) = \frac{2}{x-4} + \frac{2(x-4)}{x-4} = \frac{2 + 2(x-4)}{x-4} = \underbrace{\frac{2x-4}{x-4}}_{x-4} = \underbrace{\frac{2x-4}{x-4}}_{x-4}$$

Example 5.1.4. Find functions f and g such that

$$h(x) = \sqrt[3]{x^2 - 4} = (f \circ g)(x)$$

$$f(x) = \sqrt[3]{x} \qquad g(x) = x^2 - y \qquad (f \circ g)(x) = \sqrt[3]{x^2 - y}$$

$$f(x) = \sqrt[3]{x} \qquad g(x) = (x^2) \qquad (f \circ g)(x) = \sqrt[3]{x^2 - y}$$

$$f(x) = \sqrt[3]{x^2 - y} \qquad g(x) = (x^2) \qquad (f \circ g)(x) = \sqrt[3]{x^2 - y}$$

$$f(x) = \sqrt[3]{x^2 - y} \qquad g(x) = \sqrt[3]{x^2 - y}$$

$$f(x) = x \qquad g(x) = \sqrt[3]{x^2 - y}$$

Example 5.1.5. Let $f(x) = \sqrt{90 - x}$ and $g(x) = x^2 - x$. Find $(f \circ g)(x)$ and its domain.

$$(509)(x) = f(g(x)) = f(x^2 - x) = \sqrt{9 - (x^2 - x)}$$

$$= \sqrt{9 + x - x^2} \qquad \text{Include endpoints.} \qquad 1909$$

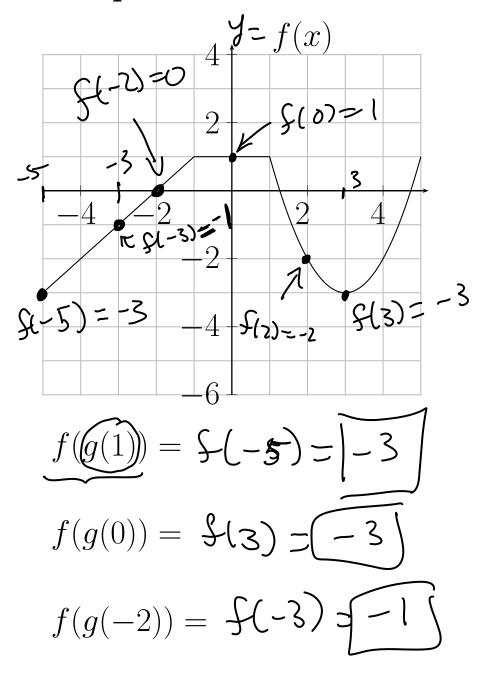
Domain: $9+x-x^2 \ge 0$

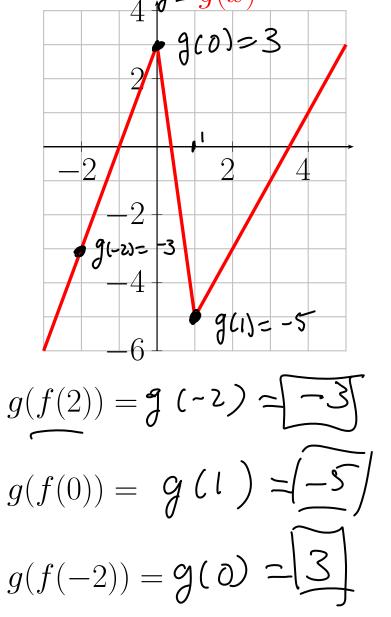
$$a=-1$$
, $b=1$, $C=9$
 $x = -b \pm \sqrt{b^2 - 4ac} = -1 \pm \sqrt{1 - 4(9)(-1)}$
 $x = -2a = 2(-1)$

$$= \frac{-1 \pm \sqrt{37}}{-2} = \frac{1}{2} \pm \frac{\sqrt{37}}{2}$$

$$\left[\begin{array}{c|c} 1 & \sqrt{37} \\ 2 & 2 \end{array}\right]$$

Example 5.1.6. Use the functions below to find the compositions.



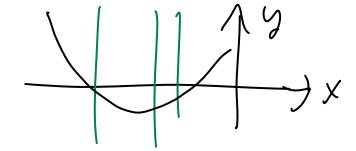


5.2 Inverse Functions

A function is said to be **one to one** (1 - 1) if no two ordered pairs have the same second component but different first component.

A function has one y value for each x value but those y values can repeat. In a 1 - 1 function the y values never repeat.

all x's \$ y's are unique



Graphically:

An equation must pass the Vertical Line Test to be a function. A function must pass the Horizontal Line Test to be 1 - 1.

Example 5.2.1. Use the horizontal line test on these graphs.

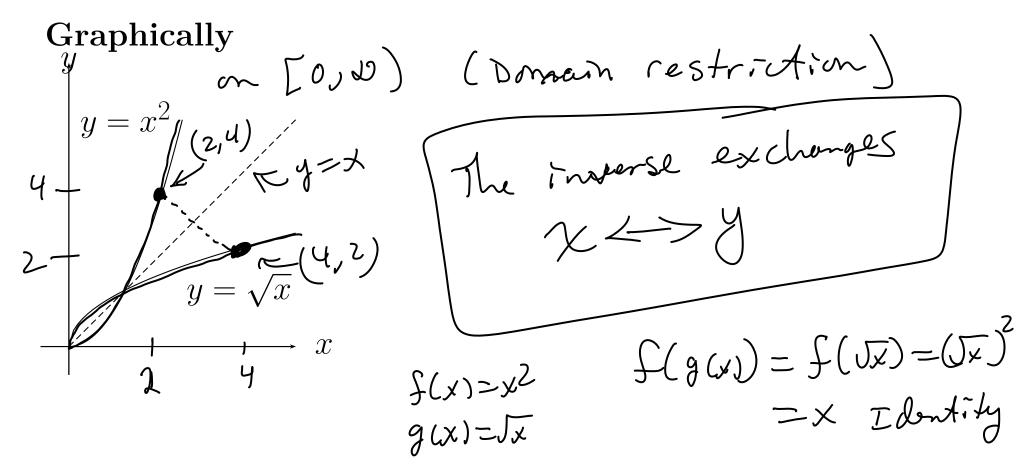
$$f(x) = x^2 \text{ is not } 1 - 1.$$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$
 $f(x) = x^3 \text{ is } 1 - 1.$

Inverses

The **indentity function** is $f(x) = \underline{x}$ or y = x. You get out what you put in. Given a function f that is 1 - 1 then f has an inverse f^{-1}

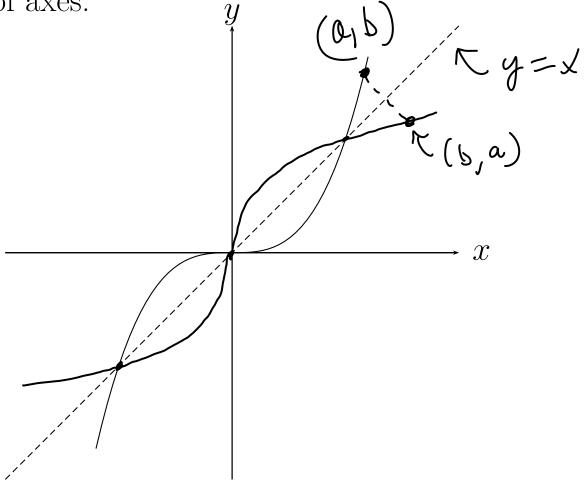
and $(f(f^{-1}(x))) = x$ and $f^{-1}(f(x)) = x.$

If f is not 1 - 1 then f^{-1} DOES NOT EXIST.



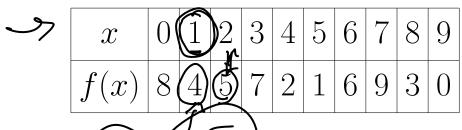
Example 5.2.2. Draw the inverse of the following function on the

same set of axes.



5.2.1 Finding inverses from tables and graphs

Example 5.2.3. Use the table below to fill in the missing values.



$$1. \underbrace{f(2)}_{x=2} = 5 + y \cdot value$$

2. if
$$f(x) = 4$$
 then $\sqrt{x} = 1$

$$3. \underbrace{f^{-1}(5)} \neq 2 \times \text{-value}$$

4. if
$$f^{-1}(x) = 1$$
 then $x \neq 4$

$$f(x) = f(1)$$

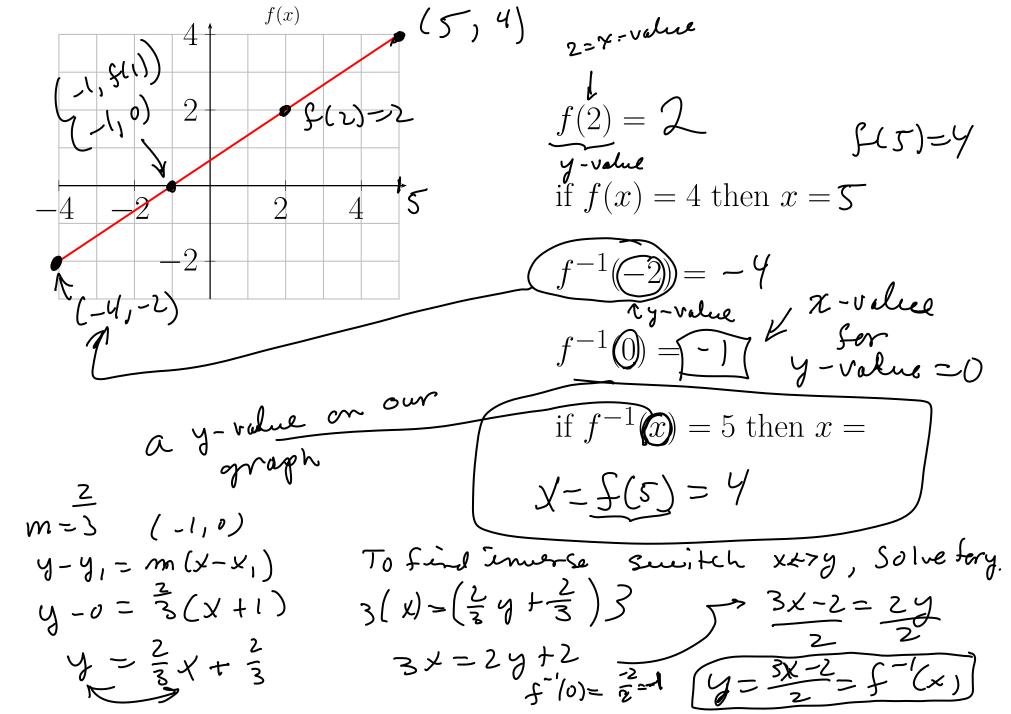
$$f(x) = f(1)$$

$$f(x) = f(1)$$

because
$$f(1)=4$$

 $f(4)=1$

Example 5.2.4. Use the graph below to fill in the missing values.



Finding Inverses Algebraically

Step 1: Solve for x.

Step 2: Check the domain.

ightharpoonupStep 3: Switch x and y.

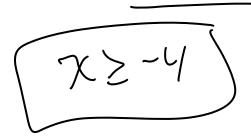
Step 4: Write $f^{-1}(x) =$

Step 5: Check that $f(f^{-1}(x)) = x$.

1: switch xx>y 2: Solve for y 3: cheek domain

Example 5.2.5. Let $f(x) = (x + 4)^2$.

1. Find the domain on which f is one-to-one and non-decreasing.



Eighthe inverse of $f(x) = \sqrt{(x+4)^2}$ restricted to this domain.

Step 1. Solve for
$$\underline{x}$$
. (two answers here)
$$\pm \sqrt{y} = x + 4 \implies \chi = -4 \pm \sqrt{y}$$

Step 2: Check the domain.

$$x \ge -4$$
 So choose $k = -4 + 5y < -$

Step 3: Switch x and y.

Step 4: Write
$$f^{-1}(x) = -4 + \sqrt{\times}$$

Step 5: Check that $f(f^{-1}(x)) = x$.

$$f(x) = (x+4)^2$$
 $f^{-1}(x) = -4+\sqrt{x}$

$$f(f'(x)) = f(-4+5x) = (-4+5x+4)^2 = (5x)^2 = x$$

Example 5.2.6 Find the inverse of
$$f(x) = \frac{2x-5}{-4x-2}$$
.

$$y = \frac{2x-5}{-4x-2} \quad (-4x-2)$$

$$y = \frac{2x-5}{-4x-2} \quad (-4x-2)$$

$$y = \frac{2x-5}{-4x-2} \quad (-4x-2)$$

-4x + 2

× 4 - 元

$$y(-4x-2) = 2x-5$$

 $-4xy(-2y) = (2x)-5$

 $-4y^{-2}$

$$-4xy - 2x = 2y - 5$$
 Factor x

$$+(-4y - 2) = 2y - 5$$

$$+ = 2y - 5$$

Smitch
$$x > y$$

$$y = \left[\frac{2x-5}{-4x-2} = f^{-1}(x)\right]$$