4.1 Introduction to Rational Functions

Q: What is a rational function?
A: It is a function of the form:

$$
f(x)=\frac{N(x)}{D(x)} \quad D(x) \neq 0
$$

Vertical and Horizontal Asymptotes

A Vertical Asymptote describes the behavior of a function near a discontinuity. They occur at any x - value where the numerator IS NOT equal to zero but the denominator IS equal to zero.

Example 4.1.1. Find the domain and vertical asymptotes for

$$
f(x)=\frac{1}{x} \text { and } f(x)=\frac{1}{x-3} \text { and } f(x)=\frac{1-3 x}{x^{2}+12 x+32}
$$

A Horizontal Asymptote describes the behavior of a function as x gets very large. (ie. What happens to y as x goes to ∞ ?)

Horizontal Asymptotes

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

where $N(x)$ and $D(x)$ have no common factors. The graph of f has one or no horizontal asymptote determined by comparing the degrees of $n(x)$ and $D(x)$.

1. If $n<m$, then the graph of f has the line $y=0$ (the x-axis) as a horizontal asymptote.
2. If $n=m$ then the graph of f has the line $y=\frac{a_{n}}{b_{m}}$ as a horzontal asymptote.
3. if $n>m$ then the graph of f has no horizontal asymptote.

Example 4.1.2. Find the domain of the function and identify any horizontal and vertical asymptotes. Sketch a graph for each.

1. $f(x)=\frac{x-4}{(x-2)^{2}}$

$$
\text { 2. } f(x)=\frac{x-4}{1+2 x}
$$

$$
\text { 3. } f(x)=\frac{(x-4)^{2}}{(x+1)^{2}}
$$

$$
\text { 4. } f(x)=\frac{(x-4)^{2}}{x-3}
$$

$$
\text { 5. } f(x)=\frac{1}{x}+2
$$

4.2 Graphing Rational Functions

Example 4.2.1. Let

$$
f(x)=\frac{3 x^{2}+4 x+1}{3 x^{2}+11 x-20}
$$

sketch the graph with the

1. y-intercept(s)
2. x-intercept(s)
3. vertical asymptote(s)
4. horizontal asymptote(s)

Example 4.2.2. Sketch and write an equation for a rational function with:

1. Vertical asymptotes at $x=5$ and $x=-5$
2. x-intercepts at $x=1$ and $x=2$
3. y intercept at 3

4.3 Rational Equations and Applications

Example 4.3.1. Suppose f varies inversely with g and that $f=36$ when $g=6$. What is the value of f when $g=12$?

Example 4.3.2. Solve the equation

$$
\frac{2}{x}=\frac{4}{3 x}-5 .
$$

Example 4.3.3. Solve the equation

$$
\frac{8}{x+1}-\frac{5}{2}=\frac{4}{3 x+3} .
$$

Example 4.3.4. Solve the equation

$$
\frac{x}{2 x-4}-9=\frac{1}{x-2} .
$$

Example 4.3.5. Solve the equation

$$
\frac{x+1}{x-1}=\frac{-1}{x+3}+\frac{8}{x^{2}+2 x-3} .
$$

4.3.1 Rational Inequalities

Example 4.3.6. Solve the inequality $\quad \frac{x+4}{x+7}<-3$.

Example 4.3.7. Solve the inequality $\quad \frac{x-2}{x^{2}-25}<-3$.

