3.1 Graphs of Polynomials

Parts of a Polynomial

Definition 3.1. A polynomial of degree n is a function of the form:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{n} \neq 0$ and the coefficients $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are real numbers.

The leading term is $a_{n} x^{n}$.
The leading coefficient is a_{n}.
The degree of the polynomial is n.
The constant term is a_{0}

Example 3.1.1. Find the leading term, the leading coefficient, the degree and the constant term for the polynomial

$$
f(x)=x^{4}-x^{3}-20 x^{2}-3 x^{6}+12
$$

3.1.1 General shape and long run behavior.

Odd exponent leading term: x, x^{3}, x^{5}, etc

Even exponent leading term: x^{2}, x^{4}, x^{6}, etc

Example 3.1.2. Find the minimum degree for the following

Example 3.1.3. Find all zeros of $f(x)=5 x^{4}-x^{3}-20 x^{2}$
To find zeros you must set the function equal to zero. Do not do this unless you are looking for zeros.

$$
\begin{aligned}
x^{4}-x^{3}-20 x^{2} & =0 \\
x^{2}\left(x^{2}-x-20\right) & =0 \\
x^{2}(x-5)(x+4) & =0
\end{aligned}
$$

Now we have three things multiplied together that equal zero so one of them must be zero.

$$
x^{2}=0 \quad \text { OR } \quad x-5=0 \quad \text { OR } \quad x+4=0
$$

Example 3.1.4. Find the zeros and intercepts of

$$
f(r)=49-r^{3}
$$

Example 3.1.5. Find the zeros and intercepts of

$$
h(x)=2 x^{4}-2 x^{2}-40
$$

Example 3.1.6. Find a polynomial of degree 3 with the following zeros: $x=-2,0,6$.

3.1.2 Multiplicity

Multiplicity

Definition 3.2. Suppose $f(x)$ is a polynomial function and m is a natural number. If $(x-c)^{m}$ is a factor of $f(x)$ but $(x-c)^{m+1}$ is not, then we say $x=c$ is a zero of multiplicity m.

The Role of Multiplicity in Graphing

Suppose $f(x)$ is a polynomial function and $x=c$ is a zero of multiplicity m.

If m is even, the graph of $y=f(x)$ touches and rebounds from the x-axis at $(c, 0)$.
If m is odd, the graph of $y=f(x)$ crosses through the x-axis at $(c, 0)$.

Example 3.1.7. Create a polynomial $P(x)$ which has the desired characteristics. Leave the polynomial in factored form. Sketch.

- degree 4
- root of multiplicity 2 at $x=1$
- roots of multiplicity 1 at $x=0$ and $x=-3$.
- the graph passes through the point $(2,20)$

Example 3.1.8. Find a formula for the polynomial $P(x)$ which has the desired characteristics. Leave the polynomial in factored form. Sketch.

- degree 9
- leading coefficient 1
- root of multiplicity 5 at $x=0$
- root of multiplicity 2 at $x=11$
- root of multiplicity 2 at $x=-5$

3.2 The Factor Theorem and the Remainder Theorem

Example 3.2.1. Simplify this fraction with long division:

$$
\frac{x^{4}+5 x^{3}+6 x^{2}-x-2}{x+2}
$$

So we know that

$$
\frac{x^{4}+5 x^{3}+6 x^{2}-x-2}{x+2}=x^{3}+3 x^{2}-1
$$

More specifically we have a factor of $f(x)=x^{4}+5 x^{3}+6 x^{2}-x-2$.

$$
x^{4}+5 x^{3}+6 x^{2}-x-2=\left(x^{3}+3 x^{2}-1\right)(x+2)
$$

Example 3.2.2. $\frac{5 x^{3}+18 x^{2}+8 x-6}{x+3}$

So we know that

$$
\frac{5 x^{3}+18 x^{2}+8 x-6}{x+3}=5 x^{2}+3 x-1+\frac{-3}{x+3} .
$$

If we write it with no denominators we get an expression of the form.

$$
5 x^{3}+18 x^{2}+8 x-6=\left(5 x^{2}+3 x-1\right)(x+3)-3
$$

This form illustrates the theorem known as The Division
Algorithm which states that any two polynomials $P(x)$ and $D(x)$ (where $D(x)$ is of lower degree) can be written as

$$
P(x)=D(x) \cdot q(x)+r(x)
$$

The Division Algorithm

If $P(x)$ and $D(x)$ are polynomials such that $D(x) \neq 0$ and the degree of $D(x)$ is less than or equal to the degree of $P(x)$, there exist unique polynomials $q(x)$ and $r(x)$ such that

$$
P(x)=D(x) \cdot q(x)+r(x)
$$

OR

$$
\frac{P(x)}{D(x)}=q(x)+\frac{r(x)}{D(x)}
$$

Synthetic Division (The easy way to divide)
Example 3.2.3. Divide using synthetic division:

$$
\frac{5 x^{3}+18 x^{2}+8 x-6}{x+3}
$$

The Remainder Theorem

Suppose $p(x)$ is a polynomial of degree at least 1 and c is a real number. When $p(x)$ is divided by $x-c$ the remainder is $p(c)$.

Example 3.2.4. Use the remainder theorem to find the value of $p(-3)$ where

$$
p(x)=5 x^{3}+18 x^{2}+8 x-6
$$

3.3 Real Zeros of a Polynomial

Example 3.3.1. Suppose we know that $x=-2$ is a zero of the polynomial

$$
f(x)=2 x^{3}+x^{2}-5 x+2
$$

Find all the zeros of the polynomial and write it in factored form.
Solution: Since we know that $x=-2$ is a zero then we know that

$$
f(x)=2 x^{3}+x^{2}-5 x+2=(x+2) \cdot q(x)
$$

and we can use synthetic division to find $q(x)$.

Example 3.3.2. Use synthetic division to divide $\frac{-3 x^{4}}{x+2}$

Example 3.3.3. Given that $(x+2)$ and $(x-4)$ are factors of

$$
f(x)=8 x^{4}-14 x^{3}-71 x^{2}-10 x+24
$$

find all the zeros of $f(x)$.

The Rational Roots Test

If the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ has integer coefficients, every rational zero of f has the form

$$
\text { Rational zero }=\frac{p}{q}
$$

where p and q have no common factors other than 1 , and $p=\mathrm{a}$ factor of the constant term a_{0}
$q=$ a factor of the constant term a_{n}.

Example 3.3.4. Use the rational roots test to find all the real zeros $g(x)=6 x^{3}-7 x^{2}+1 \quad($ ans. $1,1 / 2,-1 / 3)$

Example 3.3.5. Use the rational roots test to find all the real zeros $p(x)=12 x^{3}-35 x^{2}+7 x+30 \quad$ (ans. $\left.2,5 / 3,-3 / 4\right)$
3.4 Complex Zeros and the Fundamental Theorem of Algebra

Q: What is a complex number?
A: It is a number of the form $a+b i$ where a and b are real numbers and $i^{2}=-1$.

- a is called the real part
- b is called the imaginary part.
- The conjugate of $a+b i$ is $a-b i$.

Properties

$$
\begin{aligned}
& \text { 1. } a+b i=c+d i \quad \Leftrightarrow \quad a=c \text { and } b=d \\
& \text { 2. }(a+b i)+(c+d i)=(a+c)+(b+d) i \\
& \text { 3. }(a+b i) \cdot(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i \\
& \text { 4. }(a+b i)(a-b i)=a^{2}+b^{2}
\end{aligned}
$$

Example 3.4.1.
a. $(4+i)+(5+3 i)$
b. $(2 i+7)-2 i$
c. $(3+2 i)+(4-i)-(7+i)$
d. $(5+2 i)(4-3 i)$
e. $\frac{i}{3+i}$
f. $\frac{3-5 i}{2-i}$
g. $(3-\sqrt{-4})+(-8+\sqrt{-25})$
h. $(\sqrt{-5})(\sqrt{-5})$
i. $(2-\sqrt{-1})(5+\sqrt{-9})$
j. $\frac{1}{3 i}$

Complex numbers in quadratic equations
Example 3.4.2. Solve for x : $x^{2}+6 x+10=0$

Example 3.4.3. Solve for $x: x^{2}+1=0$

Example 3.4.4. Solve for x : $9 x^{2}-6 x+37=0$

The Linear Factorization Theorem

If $f(x)$ is a polynomials of degree n, where $n>0$, then f has precisely n linear factors

$$
f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are complex numbers.

Example 3.4.5. Find all the zeros of $f(x)=(x+5)(x-8)^{2}$

Example 3.4.6. Find all the zeros of

$$
f(t)=(t-3)(t-2)(t-3 i)(t+3 i)
$$

Example 3.4.7. Find a polynomial function of degree 7 with integer coefficients that has ONLY the zeros $c=4, c=-3 i$ and $c=3 i$

Example 3.4.8. Find all zeros of $f(x)=4 x^{3}+12 x^{2}+11 x+6$ given that $x=-2$ is one of the zeros.

Example 3.4.9. Find all the roots of $f(x)=x^{3}-7 x^{2}-x+87$ knowing that $5+2 i$ is a zero.

