
1.1 Sets of Real Numbers and the Cartesian Coordinate
Plane

Sets and Interval Notation
Definition 1.1. Suppose A and B are two sets.

• The intersection of A and B: A ∩B = {x |x ∈ A and x ∈ B}

• The union of A and B: A∪B = {x |x ∈ A or x ∈ B (or both)}



1.1.1 Interval and Inequality Notation, Numberlines

x > 2
0 1 2 3 4 5 6−1−2−3−4−5

x ≥ 2
0 1 2 3 4 5 6−1−2−3−4−5

x ≥ 2 AND x ≤ 4
0 1 2 3 4 5 6−1−2−3−4−5

0 1 2 3 4 5 6−1−2−3−4−5

0 1 2 3 4 5 6−1−2−3−4−5



x ≤ 2 OR x ≥ 4
0 1 2 3 4 5 6−1−2−3−4−5

0 1 2 3 4 5 6−1−2−3−4−5

0 1 2 3 4 5 6−1−2−3−4−5

x ≤ 2 AND x ≥ 4
0 1 2 3 4 5 6−1−2−3−4−5



Interval Notation

Inequality notation Interval notation
x > 2 (2, ∞)
x ≥ 2 [2, ∞)
x ≥ 2 AND x ≤ 4 2 ≤ x ≤ 4 [2, 4]
x ≤ 2 OR x ≥ 4 (−∞, 2] ∪ [4,∞)



1.1.2 Cartesian Coordinates and symmetry

All points in the plane are ordered pairs (x, y) where the 1st coordinate
is directed distance on the x - axis and the 2nd coordinate is directed
distance on the y - axis. The xy-plane is divided into fours quadrants
labeled I, II, III, and IV.
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Example 1.1.1. At various times, the amount of water in a tub was
measured and recorded in the table of values. Sketch a plot of the
data.

Time Water in tub
(min) (gallons)

0 0
1 8
3 24
4 32



The distance Formula

u

u

(x1, y1)

(x2, y2)

The distance between two points is
given by

d =
√
(x2 − x1)2 + (y2 − y1)2

The Midpoint Formula
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(x1, y1)

(x2, y2)

The midpoint between two points is
given by

M.P. =
(x2 + x1

2
,
y2 + y1

2

)



Example 1.1.2. Find the distance and midpoint between P (3,−10)

and Q(−1, 2)

Example 1.1.3. The midpoint of AB is at (1, 5). If A = (3, 7), find
B.



Definition 1.2. Two points (a, b) and (c, d) in the plane are said to
be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d

Shifting Points (Reflections)
To reflect a point (x, y) about the:

• x-axis, replace y with −y.
• y-axis, replace x with −x.
• origin, replace x with −x and y with −y.



Example 1.1.4. Use the graph below to
(1) Reflect the triangle over the x-axis.

(2) Reflect triangle over the y-axis.

(3) Reflect triangle over the origin.
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1.2 Relations

We reviewed in section 1.1 how to graph points so now we want to
know how to graph equations. Suppose we want to graph the equation
y = −2x+ 5. This is a relationship between x and y where the value
of y is determined by they choice of x. For each x we can find a y

value and that is one point (x, y) on the graph:

x y = −2x + 5

-1 (-2)(-1)+5 = 7
0 (-2)(0)+5 = 5
1 (-2)(1)+5 = 3
2 (-2)(2)+5 = 1

5/2 (-2)(5/2)+5 = 0
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x and y Intercepts
x-intercept: The point where the graph crosses the x-axis.

To find the x-intercept you set y = 0.

y-intercept: The point where the graph crosses the y-axis.
To find the y-intercept you set x = 0.

Example 1.2.1. Find all intercepts for

y = 4x3 − 16x

.



1.2.1 Symmetry

Symmetric about y-axis
A graph is symmetric about the y-axis if it is the
same on both sides of the y-axis.
Thus when (a, b) is on the graph then (−a, b) is
also on the graph. f (x) = f (−x) for all x.

Symmetric about x-axis
A graph is symmetric about the x-axis if it is the
same on both sides of the x-axis.
Thus when (a, b) is on the graph then (a,−b) is
also on the graph.



Symmetric about the origin
A graph is symmetric about the origin if the graph
is unchanged by a 180 degree rotation about the
origin.
Thus when (a, b) is on the graph then (−a,−b) is
also on the graph.

The short version
Symmetry The equation is equivalent when . . .

y-axis x is replaced with −x

x-axis y is replace with −y

origin x and y are replaced by −x and −y.



Example 1.2.2. Find the symmetry of y = x3.

Try replace x with −x

y = x3 y = (−x)3

Try replace y with −y

y = x3 −y = (x)3

Try replace x with −x and y with −y

y = x3 −y = (−x)3

Draw a sketch: Since we have origin symmetry we can just plot a
few positive numbers.



Example 1.2.3. Find the intercepts, determine if there is any sym-
metry and graph the function:

x2 + y3 = 1



Example 1.2.4. Find the intercepts, determine if there is any sym-
metry and graph the function:

x = 2y3 + 3y



Example 1.2.5. Sketch the graph of 3x + 2y = −6



1.3 Introduction to Functions

Definition 1.3. A function is a rule that establishes a correspon-
dence between two sets of elements (called the domain and range)
so that for every element in the domain there corresponds EXACTLY
ONE element in the range.

Definition 1.4. A function in one variable is a set of ordered
pairs with the property that no two ordered pairs have the same first
element.
For example: { (-2, 1), (-1, 2), (0, 3), (1, 4), (2, 5) }.



Definition 1.5. Domain: The ”things” you can put into a function.
Range: The ”things” you get out of a function.

Graphically
An equation defines a function if each vertical line drawn passes

through the graph at most once. This is called the Vertical Line
Test.

For example:

x

y

x

y



Example 1.3.1. Determine whether or not the relation represents
y as a function of x. Find the domain and range of those relations
which are functions.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−3, 0), (1, 6), (2,−3), (4, 2), (−5, 6), (4,−9), (6, 2)}

3. {(x, y) |x is an odd integer, and y is an even integer}

4. {(−2, y) | − 3 < y < 4}



Example 1.3.2. Which of the following are functions of x and why?

1. x2 + y = 1

2. x + y2 = 1

3. x + y3 = 1

Example 1.3.3. Find the domain and range of the function
y =

√
x + 8.



Example 1.3.4. Use the graph of f (x) below to answer the questions
about f (x).
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1. Find the domain of f .

2. Find the range of f .

3. Determine f (2).

4. List the x-intercept(s), if any exist.

5. List the y-intercept(s), if any exist.



1.4 Function Notation

We can write a function several ways. The variable used to represent
elements of the Domain is the independent variable and the vari-
able used to represent elements of the Range is called the dependent
variable. The most common way of writing a function is

y︸︷︷︸ = f ( x︸︷︷︸) = 2x + 1︸ ︷︷ ︸ .
dependent
variable

independent
variable

We can also write a function as

f : x → 2x + 1 OR f : {(x, y) | y = 2x + 1}



Example 1.4.1. Consider the following function: f (x) = 7x + 3.
Find the values of f (0), f (−1), f (−1 + h) and f (x + h).



Example 1.4.2. Consider the following function:
f (x) = 4x2+3x− 22. Find the values of f (0), f (−1), and f (x+ h).



Piecewise Functions
Example 1.4.3. Evaluate f (0), f (−1), f (1), and f (2) for

f (x) =

{
x2 + 2 if x < 1

2x2 + 2 if x ≥ 1

Example 1.4.4. Determine the domain for the function. Write your
answer in Interval Notation and as an Inequality.

f (x) = −1 +
√
14x− 5



Example 1.4.5. Determine the domain for the function. Write your
answer in Interval Notation and as an Inequality.

f (x) =
3x + 20

x2 + 8x− 8



Example 1.4.6. Let g(s) =
s

s + 1
− 1. Find the values of g(10),

g
(

1
11

)
, g

(
−1
8

)



1.5 Function Arithmetic

Arithmetic Combinations
We can add, subtract, multiply and divide functions much like we

do with real numbers.
Notation

1. (f + g)(x) = f (x) + g(x)

2. (f − g)(x) = f (x)− g(x)

3. (f · g)(x) = f (x) · g(x)

4.
(
f

g

)
(x) =

f (x)

g(x)



Example 1.5.1. If f (x) = 2x + 3 and g(x) = x2 + 1 find

(f + g)(x) = 2x + 3 + x2 + 1 = x2 + 2x + 4

(f − g)(x) =

(f · g)(x) =

(
f

g

)
(x) =



We can evaluate these new functions the exact same way we did be-
fore. Whatever is in the parentheses is replaced for x in the equation.
Example 1.5.2. If f (x) = x2 + 2x − 3 and g(x) = x3 − 3x2 − 4x

find

a) (f + g)(−1) =

b) (f · g)(2) =

c) The domain of
(
f

g

)
(x) =



Example 1.5.3. Suppose f (x) = x2 − 2x + 1. Find
f (x + h)− f (x)

h
(Difference Quotient)



Example 1.5.4. A company produces very unusual CD’s for which
the variable cost is $ 7 per CD and the fixed costs are $ 30000. They
will sell the CD’s for $ 52 each. Let x be the number of CD’s produced.

1. Write the total cost C as a function of the number of CD’s pro-
duced. C(x)

2. Write the total revenue R as a function of the number of CD’s
produced. R(x)

3. Write the total profit P as a function of the number of CD’s pro-
duced. P (x)

4. Find the number of CD’s which must be produced to break even.



1.6 Graphs of Functions

Definition 1.6. The graph of a function f is a collection of
ordered pairs (x, f (x)) such that x is in the domain of f (x).

Recall:
x is the distance in the x-direction. y = f (x) is the the distance in

the y direction.
Domain and Range

The domain of a function is those x-values that we can use in the
function.

The range of a function is the y-values we get out of the function.



Example 1.6.1. y = x2

Domain: All real numbers.
Range: y ≥ 0.

x

y



Zeros of a Function
Definition 1.7. The zeros of a function f (x) are those x-values
for which f (x) = 0.

Q: How do we find the zeros of a function?
A: Set the function equal to zero. Also

Factor! Factor! Factor!

Example 1.6.2. Find the zeros of f (x) = 3x2 + 22x− 16



Example 1.6.3. Find the zeros of f (x) = x2 − 9x + 14

4x
.



Increasing and Decreasing Functions
Definition 1.8.

A function is increasing on an interval if for any x1 and x2 in the
interval with x1 < x2 then f (x1) < f (x2).

A function is decreasing on an interval if for any x1 and x2 in the
interval with x1 < x2 then f (x1) > f (x2).

A function is constant on an interval if for any x1 and x2 in the
interval f (x1) = f (x2).
Example 1.6.4.
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Example 1.6.5. Use the graph to solve the equation x2 + 2x = 0
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Linear Functions

f (x) = mx + b Linear Function

Graph:



Example 1.6.6. Graph f (x) = 3
2x− 2

Step 1: Plot y- intercept.
Step 2: Plot another point using the slope 3

2
=

rise
run



Graphing Piecewise Functions
Example 1.6.7. Graph

f (x) =

{
3
2x− 2, x ≥ 2

3
2x + 7, x < 2



Example 1.6.8. Graph

f (x) =


−x, x ≤ 0

0, 0 < x ≤ 1

x− 1, x > 1
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Example 1.6.9. Write a piecewise function for the graph shown
below.



Even and odd functions
Definition 1.9.
A function is even if f (x) = f (−x) for all x in the domain of f (x).
A function is odd if −f (x) = f (−x) for all x in the domain of f (x).

Example 1.6.10. Is h(x) = x5 − 5x3 even, odd or neither?
Look at h(−x):

h(−x) = (−x)5 − 5(−x)3



Example 1.6.11. Is h(x) = x4 − 3x2 even, odd or neither?
Look at h(−x):

h(−x) = (−x)4 − 3(−x)2

Example 1.6.12. Is h(x) = x3 − 5 even, odd or neither?
Look at h(−x):



1.7 Transformations

Basic Graphs
f (x) = x

x

y

x

f (x) = x2

y

f (x) = |x|

x

y

f (x) = x3
x

y



Shifting Graphs
Moving up and down
h(x) = f (x) + a moves f (x) up ”a” units.
h(x) = f (x)− a moves f (x) down ”a” units.

Example 1.7.1. h(x) = x3 − 3 = f (x) − 3 if f (x) = x3. Graph
f (x) and h(x) on the same set of axes.
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Moving left and right
h(x) = f (x + a) moves f (x) to the left ”a” units.
h(x) = f (x− a) moves f (x) to the right ”a” units.

Example 1.7.2. h(x) = |x − 2| = f (x − 2) if f (x) = |x|. Graph
f (x) and h(x) on the same set of axes.
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Example 1.7.3. h(x) = (x + 2)3 − 3 = f (x + 2)− 3 if f (x) = x3.
Graph f (x) and h(x) on the same set of axes.
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Reflecting across x-axis
h(x) = −f (x) reflects f (x) across the x-axis.

Example 1.7.4. h(x) = −x2 = −f (x) if f (x) = x2. Graph f (x)

and h(x) on the same set of axes.
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Example 1.7.5. h(x) = −(x+2)2+2 = −f (x+2)+2 if f (x) = x2.
Graph f (x) and h(x) on the same set of axes.
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Vertical stretch or expansion

h(x) = A ∗ f (x)

stretches f (x) vertically if A > 1 and expands f (x) horizontally
if 0 < A < 1.

Given the function

g(x) = Af (x +B) + C

the following transformations occur on f (x):

1. |A| stretches or expands the function f (x) by a factor |A|.
2. B moves the function f (x) left (B > 0) or right (B < 0)
3. C moves the function f (x) up (C > 0) or down (C < 0)

A negative sign in front of the function (A is negative) will reflect
it over the x-axis.



Example 1.7.6. h(x) = 2(x + 3)2 − 3 = 2f (x + 3) − 3 where
f (x) = x2. Graph f (x) and h(x) on the same set of axes.
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Example 1.7.7. h(x) = −1
2(x − 4)3 + 2 = −1

2f (x − 4) + 2 if
f (x) = x3. Graph f (x) and h(x) on the same set of axes.
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Example 1.7.8. Write the equations of the following graphs.
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Example 1.7.9. Write the equations of the following graphs.
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Example 1.7.10. Write the equation for the function that has the
shape of f (x) = x2 but is shifted 3 units to the left, 7 units up and
then reflected across the x axis.
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