Section 5.6: Graphing

Review:

The first derivative test for increasing/decreasing.

Suppose that f is continuous on $[a, b]$ and differentiable on the open interval (a, b).
If $f'(x) > 0$ for all x in (a, b) then f increases on $[a, b]$.
If $f'(x) < 0$ for all x in (a, b) then f decreases on $[a, b]$.

The First Derivative Test for Local Extrema.

Let f be a continuous function on $[a, b]$ and c be a critical number in $[a, b]$.
1. If $f'(x) \geq 0$ on (a, c) and $f'(x) \leq 0$ on (c, b), then f has a local maximum of $f(c)$ at $x = c$.
2. If $f'(x) \leq 0$ on (a, c) and $f'(x) \geq 0$ on (c, b), then f has a local minimum of $f(c)$ at $x = c$.
3. If f'' does not change signs at $x = c$, then f has no local extrema at $x = c$.

The Second Derivative Test for Concavity

Let f be a twice differentiable function on an interval I.
1. If $f''(x) > 0$ on I, the graph of f over I is concave up.
2. If $f''(x) < 0$ on I, the graph of f over I is concave down.

Graphing using y' and y'':

Steps:
1. Determine the points of discontinuity.
2. Determine the asymptotes (vertical, horizontal)
3. Determine the x- and y-intercepts.
4. Determine the critical point(s). (Set $f'(x) = 0$ and undefined).
5. Determine the intervals where the function f is increasing/decreasing.
6. Determine the local extrema
7. Determine the possible point(s) of inflection. Set $f''(x) = 0$ and undefined).
8. Determine the intervals where the function f is concave up/down.
9. Determine the inflection point(s)
10. Determine extra point(s) if necessary.
11. Sketch the graph using the information obtained above.
Graph the following using the steps above

Ex 1: $f(x) = \frac{1}{3} (x - 1)^3 + 2$
2. \(f(x) = 3x^4 + 4x^3 \)
3. \(g(x) = \frac{x}{x^2 - 4} = \frac{x}{(x - 2)(x + 2)} \)