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Chapter 1

Trigonometric Functions

1.1 Angles and Their Measure

Angles

Definition 1.1. An angle is the shape formed when two rays come together. In trigonometry
we think of one of the sides as being the Initial Side and the angle is formed by the other
side (Terminal Side) rotating away from the initial side. See Figure 1.1.

We will usually draw our angles on the coordinate axes with the positive x-axis being the
Initial Side. If we sweep out an angle in the counter clockwise direction we will say the
angle is positive and if we sweep the angle in the clockwise direction we will say the angle is
negative. An angle is in standard position if the initial side is the positive x-axis and the
vertex is at the origin.

θ

Initial Side

Te
rm

in
al
Si
de

(a) Positive angle

Initial Side

Te
rm

in
al
Si
de

θ

(b) Negative Angle

Figure 1.1: Positive and Negative Angles

1



2 Trigonometric Functions

When representing angles using variables, it is traditional to use Greek letters. Here is a list
of commonly encountered Greek letters.

alpha beta gamma theta phi
α β γ θ ϕ

Measuring an Angle

r
1 radian

r r

Figure 1.2: One Radian

When we measure angles we can think of them in terms of
pieces of a circle. We have two units for measuring angles.
Most people have heard of the degree but the radian is often
more useful in trigonometry.

NOTE: By convention if the units are not specified they are
radians.

Degrees: One degree (1◦) is a rotation of 1/360 of a complete
revolution about the vertex. There are 360 degrees in one full
rotation which is the terminal side going all the way around
the circle.

Radian: One Radian is the measure of a central angle θ that
intercepts an arc equal in length to the radius r of the circle.
See Figure 1.2 at right. Since the radian is measured in terms
of r on the arc of a circle and the complete circumference of
the circle is 2πr then there are 2π radians in one full rotation.

Since 360◦ = 2π radians, this gives us a way to convert between degrees and radians:

180◦ = π radians

Converting Degrees and Radians

To convert from degrees → radians we multiply degrees by π
180

degrees · π

180
= radians

To convert from radians → degrees we multiply radians by 180
π

radians · 180
π

= degrees
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Example 1.1.1
Consider the following two angles: 240◦ and −120◦. Sketch them and convert to radians.

240◦

(a) 240◦

−120◦

(b) -120◦

Figure 1.3: Example 1.1.1

Solution:

To convert to radians we need to multiply by the appropriate factor.

240◦ · π

180
=

4π

3
and − 120◦ · π

180
= −2π

3

If we sketch these two angles from Example 1.1.1 on a single graph and in standard position
(Figure 1.4) we will see that they look exactly the same. Since these two angle terminate
at the same place we call them Coterminal Angles.

−120◦

240◦

Figure 1.4: Coterminal angles
end up in the same position but have
different angle measures.

There are an infinite number of ways to draw an angle on the coordinate axes. By simply
adding or subtracting 360◦ (or 2π rad) you will arrive at the same place. For example if you
draw the angles 240◦ + 360◦ = 600◦ and −120◦ − 360◦ = −480◦ you will end up in the same
positions as the angles in Figure 1.4.
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Example 1.1.2
Convert 30◦ and -210◦ to radians, sketch the angle and find two coterminal angles (one
positive and one negative).

Solution:

30◦

(a) 30◦

−210◦

(b) -210◦

Figure 1.5: Example 1.1.2

a) 30◦ · π

180
=

π

6

Coterminal angles: 30◦ + 360 ◦ = 390◦ and 30◦ − 360◦ = −330◦

b) −210 · π

180
= -7π

6

Coterminal angles: -210◦ + 360◦ = 150◦ and −210◦ − 360◦ = −570◦

Example 1.1.3

Convert π

4
and −5π

6
to degrees, sketch the angles and find two coterminal angles for each

(one positive and one negative). Leave exact answers

Solution:

− 5π
6

π
4

a) Convert to degrees: π

4
· 180

π
= 45◦

Coterminal angles: π

4
+ 2π = 9π

4
and π

4
- 2π = −7π

4

b) Convert to degrees: −5π

6
· 180

π
= −150◦

Coterminal angles: −5π

6
+ 2π = 7π

6

and −5π

6
- 2π = −17π

6
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Example 1.1.4
Convert 1 radian to degrees.

Solution:
1 · 180

π
= 57.29◦

Example 1.1.5
Find an angle θ that is coterminal with 970◦, where 0 ≤ θ < 360◦

Solution:

Since adding or subtracting a full rotation, 360◦, would result in an angle with terminal
side pointing in the same direction, we can find coterminal angles by adding or subtracting
multiples of 360◦. An angle of 970◦ is coterminal with an angle of 970−360 = 610◦. It would
also be coterminal with an angle of 610− 360 = 250◦.

The angle θ = 250◦ is coterminal with 970◦.

By finding the coterminal angle between 0 and 360◦, it can be easier to sketch the angle in
standard position.

Example 1.1.6

Find an angle β that is coterminal with 19π

4
, where 0 ≤ β < 2π

Solution:

As in Example 1.1.5, adding or subtracting a full rotation (2π) will result in an angle with
terminal side pointing in the same direction. In this case we need an angle 0 ≤ β < 2π so
we need to subtract 2π twice. An angle of 19π

4
is coterminal with an angle of

19π

4
− (2) · 2π =

19π

4
− 16π

4
=

3π

4
.

The angle β =
3π

4
is coterminal with 19π

4
.

Degrees, Minutes and Seconds

The Babylonians who lived in modern day Iraq from about 5000BC to 500BC used a base 60
number system (link to Wikipedia). It is believed that this is the origin of having 60 minutes
in an hour and 60 seconds in a minute. This may also explain why our degree measures are
multiples of 60, once around the circle is 6 60s. Similar to the way hours are divided into
minutes and seconds the degree (◦ ) can also be divided into 60 minutes (′) and each of
those minutes is divided into 60 seconds (′′). This form is often abbreviated DMS ( ◦ ′ ′′ ).

https://en.wikipedia.org/wiki/Sexagesimal
https://en.wikipedia.org/wiki/Sexagesimal
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Example 1.1.7
Convert 5◦37′15′′ to a decimal.

Solution:

First we need to understand that 1′ = 1
60

◦ and 1′′ = 1
60

′
= 1

3600

◦. To convert to a decimal you
have to write all the parts as fractions. 37′ = 37

60

◦

5◦37′15′′ = 5 +
37

60
+

15

3600
= 5.6208◦

Example 1.1.8
Convert 15.67◦ to DMS.

Solution:

We know our answer will look like
15◦ x′ y′′.

This direction is a bit more difficult because you have to work your way up to 0.67◦ using
minutes and seconds. First we have to determine how many minutes we have. x′

60
= 0.67◦

so x′ = 0.67 · 60 = 40.2′. We can only use whole numbers so we take x′ = 40. Now we
have 15◦40′y′′. y′′ is the seconds and there are still 0.2′ left. We can convert that to seconds
because there are 60 seconds in a minute and we have 0.2 minutes. (0.2′)(60) = 12′′. Now
our answer is

15◦40′12′′

and we can verify that this is true using the same technique we used in Example 1.1.7:

15◦40′12′′ = 15 +
40

60
+

12

3600
= 15.67◦
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Some basic angles

Name of angle Measure in degrees Measure in radians
Right angle 90◦ π

2

Straight angle 180◦ π
Acute angle between 0 & 90◦ between 0 & π

2

Obtuse angle between 90 & 180◦ between π
2

and π

(a) Right

•

180◦

(b) Straight (c) Acute (d) Obtuse
Figure 1.6: Basic Angles

Some special angles

(a) Two acute angles are complementary if their sum equals 90◦. In other words, if
0◦ ≤ ∠A , ∠B ≤ 90◦ then ∠A and ∠B are complementary if ∠A+ ∠B = 90◦.

(b) Two angles between 0◦ and 180◦ are supplementary if their sum equals 180◦. In other
words, if 0◦ ≤ ∠A , ∠B ≤ 180◦ then ∠A and ∠B are supplementary if ∠A + ∠B =
180◦.

(c) Two angles between 0◦ and 360◦ are conjugate (or explementary) if their sum equals
360◦. In other words, if 0◦ ≤ ∠A , ∠B ≤ 360◦ then ∠A and ∠B are conjugate if
∠A+ ∠B = 360◦.

∠A

∠B

(a) complementary

∠A

∠B

(b) supplementary

∠A
∠B

(c) conjugate
Figure 1.7: Types of pairs of angles

Notation: Notice that we use the ∠ symbol here to denote angle A. Very often we will drop
the ∠ symbol and simply refer to the angle by its letter if there is no chance for confusion.
Angles are often labeled with Greek letters as seen earlier or with Latin letters as seen here.
It is common to use upper case letters to denote angles but sometimes we use lowercase
variable names (e.g. x , y , t).
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Arc Length and Area

There is another way to define the radian. The radian measure of an angle is the ratio of
the length of the circular arc subtended by the angle to the radius of the circle as seen in
Figure 1.8. So the radian measure of an arc or length s on a circle of radius r is

radian measure = θ =
s

r

This formulation of the radian gives us a formula for the arc length s if we know the angle
θ in radians:

arc length = s = rθ

Example 1.1.9
Find the length of the arc of a circle with radius 4 cm and central angle 5.1 radians.

Solution:

s = rθ

= (4)(5.1)

= 20.4cm

Example 1.1.10
Because Pluto orbits much further from the Sun than Earth, it takes much longer to orbit
the Sun. In fact, Pluto takes 248 years to orbit the Sun. That’s because Pluto orbits at an
average distance of 5.9 billion km from the Sun, while Earth only orbits at 150 million km.
Assuming that Pluto has a circular orbit how far does it travel in the time it takes the Earth
to go around the sun once?

Solution: Since it takes 248 years to orbit the sun that means that in one year Pluto has
completed 1

248
of an orbit. To calculate the distance it has traveled we need to calculate the

arc length so we need to convert 1
248

of an orbit to radians. Since one rotation = 2π radians
then

1

248
rotations = 2π

(
1

248

)
= 0.025335425 radians

s = rθ = (5, 900, 000, 000)(0.025335425) = 149, 479, 000km

Pluto travels approximately 150 million km in a year
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r

s = rθ

r
θ

Area

Figure 1.8: Area of sector
and arc length

From geometry we know that the area of a circle of radius r is
πr2. We want to find the area of a sector of a circle. A sector
of a circle is the region bounded by a central angle and its
intercepted arc, such as the shaded region in Figure 1.8. The
area of this sector is proportional to the angle by the following
relationship:

sector area
circle area =

sector angle
one revolution =

Area

πr2
=

θ

2π

This gives a formula for the area of the sector of circle radius
r with central angle θ:

Area =
1

2
r2θ

Example 1.1.11
A farmer wants to irrigate her field with a central pivot irrigation system1 with a radius of
400 feet. Due to water restrictions she can only water a portion of the field each day. She
calculated that she could irrigate an arc of 130◦ each day. How much area is being irrigated
each day?

Solution: To use our area formula we need to convert the angle to radians.

θ = 130◦
( π

180

)
=

13π

18

Area =
1

2
r2θ =

(
1

2

)
(400)2

(
13π

18

)
≈ 181514ft2

The area is about 181514ft2 .

1.1 Exercises

For Exercises 1-20,

a) draw the angle in standard position

b) find two coterminal angles, one positive and one negative.

Leave your answer in the same units (degrees/radians) as the original problem.

1https://en.wikipedia.org/wiki/Center_pivot_irrigation

https://en.wikipedia.org/wiki/Center_pivot_irrigation
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1. 120◦ 2. −120◦ 3. −30◦ 4. 217◦ 5. −217◦

6. −115◦ 7. 928◦ 8. 1234◦ 9. −1234◦ 10. −515◦

11. π

2 12. 5π

3
13. −5π

3
14. 3π

7
15. 11π

6

16. 5π 17. −17 18. −35π

3
19. −15π

4
20. 122π

3

For Exercises 21-32, convert to radians or degrees as appropriate. Leave an exact answer.

21. 120◦ 22. 115◦ 23. 135◦ 24. −425◦

25. −270◦ 26. 15◦ 27. π

2
28. π

3

29. π

4
30. π

5
31. −π

6 32. −11π

6

For Exercises 33-36, write the following angles in DMS format. Round the seconds to the
nearest whole number.

33. 12.5◦ 34. 125.7◦ 35. 539.25◦ 36. 7352.12◦

For Exercises 37-40, write the follwing angles in decimal format. Round to two decimal
places.

37. 12◦12′12′′ 38. 25◦50′50′′ 39. 0◦22′17′′ 40. 1◦1′1′′

41. Saskatoon, Saskatchewan is located at 52.1332◦N, 106.6700◦W. Convert these map coor-
dinates to DMS format.

42. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of
5 radians.

43. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1
radian.

44. On a circle of radius 12 cm, find the length of the arc that subtends a central angle of
120 degrees.

45. On a circle of radius 9 miles, find the length of the arc that subtends a central angle of
200 degrees.

46. A central angle in a circle of radius 5 m cuts off an arc of length 2 m. What is the measure
of the angle in radians? What is the measure in degrees?

47. Mercury orbits the sun at a distance of approximately 36 million miles. In one Earth
day, it completes 0.0114 rotation around the sun. If the orbit was perfectly circular, what
distance through space would Mercury travel in one Earth day?
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48. Find the distance along an arc on the surface of the Earth that subtends a central angle
of 1◦5′. The radius of the Earth is 6,371 km.

49. Find the distance along an arc on the surface of the sun that subtends a central angle of
1′′ (1 second). The radius of the sun is 695,700 km.

50. On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3 feet?

51. On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2 feet?

52. A sector of a circle has a central angle of θ = 45◦. Find the area of the sector if the radius
of the circle is 6 cm.

53. A sector of a circle has a central angle of θ = 10π
7

. Find the area of the sector if the radius
of the circle is 20 cm.
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1.2 Right Triangle Trigonometry

Pythagorean Theorem

A C

B

b

a
c

Figure 1.9: a2 + b2 = c2

In a right triangle, the side opposite the right angle is called the
hypotenuse, and the other two sides are called its legs. For
example, in Figure 1.9 the right angle is C, the hypotenuse is
the line segment AB, which has length c, and BC and AC are
the legs, with lengths a and b, respectively. The hypotenuse is
always the longest side of a right triangle. When using Latin
letters to label a triangle we use upper case letters (A,B,C, . . .)
to denote the angles and we use the corresponding lower case
letters (a, b, c, . . .) to represent the side opposite the angle. So
in Figure 1.9 side a is opposite angle A.

By knowing the lengths of two sides of a right triangle, the length of the third side can be
determined by using the Pythagorean Theorem:

Pythagorean Theorem

Pythagorean Theorem: The square of the length of the hypotenuse of a right
triangle is equal to the sum of the squares of the lengths of its legs.
Thus, if a right triangle has a hypotenuse of length c and legs of lengths a and b, as in
Figure 1.9, then the Pythagorean Theorem says:

a2 + b2 = c2 (1.1)

Example 1.2.1
For each right triangle below, determine the length of the unknown side:

A C

B

4

a
5

D F

E

e

1
2

X Z

Y

1

1
z

Solution: For triangle △ABC, the Pythagorean Theorem says that
a2 + 42 = 52 ⇒ a2 = 25 − 16 = 9 ⇒ a = 3 .

For triangle △DEF , the Pythagorean Theorem says that

e2 + 12 = 22 ⇒ e2 = 4 − 1 = 3 ⇒ e =
√
3 .

For triangle △XY Z, the Pythagorean Theorem says that

12 + 12 = z2 ⇒ z2 = 2 ⇒ z =
√
2 .
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Example 1.2.2
A ladder 20 feet long leans against the side of a house. Find the height h from the top of the
ladder to the ground if the base of the ladder is placed 8 feet from the base of the building.

h

8

20

90◦

Solution: Since the house and the ground are perpendicular to each other they make right
angle at the base of the wall. Then the ladder, the ground and the wall form a right triangle
and we can use the Pythagorean theorem to find the height.

h2 + 82 = 202 ⇒ h2 = 400 − 64 = 336 ⇒ h ≈ 18.3 ft. .

Basic Trigonometric Functions

Consider a right triangle where one of the angles is labeled θ. The longest side is called the
hypotenuse, the side opposite the angle θ is called the opposite side and the side adjacent
to the angle is called the adjacent side, see Figure 1.10. Using the lengths of these sides
you can form 6 ratios which are the trigonometric functions of the angle θ. These ratios are
irrespective of the size of the triangle. If the angles in two triangles are the same then the
triangles are similar which means the ratios of the sides will be the same. When calculating
the trigonometric functions of an acute angle θ, you may use any right triangle which has θ
as one of the angles.

θ

adjacent

oppositehypote
nuse

Figure 1.10: Standard right triangle
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The Six Trigonometric Functions

Function Abbreviation Function Abbreviation

Sine of θ: sin θ =
opposite

hypotenuse Cosecant of θ: csc θ =
hypotenuse

opposite

Cosine of θ: cos θ =
adjacent

hypotenuse Secant of θ: sec θ =
hypotenuse

adjacent

Tangent of θ: tan θ =
opposite
adjacent Cotangent of θ: cot θ =

adjacent
opposite

We will usually use the abbreviated names of the functions.

Example 1.2.3
Given the following triangle find the six trigonometric functions of the angles θ and α.

θ

α

12

5

13

Solution:

sin θ =
opposite

hypotenuse = 5

13
csc θ =

hypotenuse
opposite = 13

5

cos θ =
adjacent

hypotenuse = 12

13
sec θ =

hypotenuse
adjacent = 13

12

tan θ =
opposite
adjacent = 5

12
cot θ =

adjacent
opposite = 12

5

The same thing can be done for α but now the opposite and adjacent sides are switched:
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sinα =
opposite

hypotenuse = 12

13
cscα =

hypotenuse
opposite = 13

12

cosα =
adjacent

hypotenuse = 5

13
secα =

hypotenuse
adjacent = 13

5

tanα =
opposite
adjacent = 12

5
cotα =

adjacent
opposite = 5

12

Example 1.2.4

θ

1

5

√
26

Suppose θ is an angle such that tan θ = 5 and 0 ≤ θ ≤ π
2
, solve for the other

five trigonometric functions.

Solution: You know that tan θ = 5 = 5
1

is the ratio opposite
adjacent so if we draw

a right triangle and label one of the angles θ then we know that the side
opposite θ is 5 and the side adjacent to θ is 1. We can draw a triangle and
solve for the hypotenuse (

√
26) using the Pythagorean theorem. Then we

read the values of the trigonometric functions from the triangle.

sin θ =
opposite

hypotenuse = 5√
26

csc θ =
hypotenuse

opposite =
√
26

5

cos θ =
adjacent

hypotenuse = 1√
26

sec θ =
hypotenuse

adjacent =
√
26

1

tan θ =
opposite
adjacent = 5

1
cot θ =

adjacent
opposite = 1

5

Two Special Triangles

For the angles 45◦, 30◦ and 60◦ we have two special triangles which allow us to find the
their trigonometric functions. To construct a right triangle with a 45◦ angle we will start
with a square with sides of length 1 and cut it in half with a diagonal. Since the square is
completely symmetric a diagonal will cut the angle in half creating two 45◦ angles. Consider
the lower triangle in Figure 1.11. We found the length of the diagonal by the Pythagorean
theorem. Then we read the values of the trigonometric functions from the triangle.
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sin 45◦ =
opposite

hypotenuse = 1√
2

cos 45◦ =
adjacent

hypotenuse = 1√
2

tan 45◦ =
opposite
adjacent = 1

1
= 1

csc 45◦ =
hypotenuse

opposite =
√
2

1
sec 45◦ =

hypotenuse
adjacent =

√
2

1
cot 45◦ =

adjacent
opposite = 1

1
= 1

1

1

1

1

√
2

45◦

Figure 1.11

1 1

2 2
√
3

60◦ 60◦

30◦

2

Figure 1.12

We can also construct a triangle for 30◦ and 60◦ angles. To do this we start with an equilateral
triangle where each side has length 2. We then cut it in half vertically to create two right
triangles with 30◦ and 60◦ angles as shown in Figure 1.12. To find the height of the triangle,√
3, we once again used the Pythagorean theorem. With this triangle we can now find the

values of the six trigonometric functions for both 30◦ and 60◦ angles.

sin 30◦ =
opposite

hypotenuse = 1

2
cos 30◦ =

adjacent
hypotenuse =

√
3

2
tan 30◦ =

opposite
adjacent = 1√

3

csc 30◦ =
hypotenuse

opposite = 2 sec 30◦ =
hypotenuse

adjacent = 3√
3

cot 30◦ =
adjacent
opposite =

√
3

1

sin 60◦ =
opposite

hypotenuse =
√
3

2
cos 60◦ =

adjacent
hypotenuse = 1

2
tan 60◦ =

opposite
adjacent =

√
3

1

csc 60◦ =
hypotenuse

opposite = 3√
3

sec 60◦ =
hypotenuse

adjacent = 2 cot 60◦ =
adjacent
opposite = 1√

3

Note that we could have done this with a square or equilateral triangle with side length a
and still have come up with the same ratios. Figure 1.13 shows the two triangles and our
trigonometric ratios are summarized in the table. The angles are presented in both degrees
and radians. Here we will simplify and rationalize denominators where possible. If our ratio
is a

a
√
2

we will move the
√
2 to the numerator by multiplying by

√
2√
2

to get a·
√
2

a
√
2·
√
2
=

√
2
2
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a

a
a
√
2

45◦

45◦

(a) 45-45-90

a
√
3

a

2a

30◦

60◦

(b) 30-60-90

Figure 1.13: Two general special right triangles (any a > 0)

Trigonometric Ratios for the Special Triangles

sin 45◦ = sin π
4
=

√
2
2

cos 45◦ = cos π
4
=

√
2
2

tan 45◦ = tan π
4
= 1

csc 45◦ = csc π
4
=

√
2 sec 45◦ = sec π

4
=

√
2 cot 45◦ = cot π

4
= 1

sin 30◦ = sin π
6
= 1

2
cos 30◦ = cos π

6
=

√
3
2

tan 30◦ = tan π
6
=

√
3
3

csc 30◦ = csc π
6
= 2 sec 30◦ = sec π

6
= 2

√
3

3
cot 30◦ = cot π

6
=

√
3

sin 60◦ = sin π
3
=

√
3
2

cos 60◦ = cos π
3
= 1

2
tan 60◦ = tan π

3
=

√
3

csc 60◦ = csc π
3
= 2

√
3

3
sec 60◦ = sec π

3
= 2 cot 60◦ = cot π

3
=

√
3
3

Example 1.2.5
Use the triangle below to find the lengths of the other two sides, x and y. Angle A is 60◦

A

y

x

18

Solution: Since we know the angle is 60◦ we can use the sine and cosine
to find the lengths of the missing sides. From our 30-60-90 triangle we
can see that cos 60◦ = 1

2
and sin 60◦ =

√
3
2

set up equations to solve for
x and y.

cos 60◦ =
adjacent

hypotenuse =
x

18
=

1

2

x = 18

(
1

2

)
= 9

sin 60◦ =
opposite

hypotenuse =
y

18
=

√
3

2

y = 18

(√
3

2

)
= 9

√
3
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Example 1.2.6
Benjamin is 6 feet tall and casts a 10 foot shadow when he is standing 20 feet from the base
of a street light. What is the height of the street light?

Solution: First we start with a labeled picture. We will call the angle of elevation from the
end of the shadow to the top of the light θ. Then we will draw two right triangles from our
picture.

θ

h

6

20 10

We can find the value of tan θ from both triangles. From the large one tan θ =
h

30
and from

the small one tan θ =
6

10
. Then set them equal and solve for h

tan θ =
h

30
=

6

10
=⇒ h = 18

Identities

Example 1.2.7

Show that tan θ =
sin θ

cos θ
.

Solution:

sin θ

cos θ
=

opposite
hypotenuse

adjacent
hypotenuse

=
opposite

hypotenuse · hypotenuse
adjacent =

opposite
adjacent = tan θ

We can similarly show that cot θ =
cos θ

sin θ

These properties in Example 1.2.7 are true no matter what angle we use. When you have
an equation that is always true it is known as an identity. We will see through the course
of this book that there are many identities that can be formed using the 6 trigonometric
functions.
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Basic Identities

tan θ =
sin θ

cos θ
cot θ =

cos θ

sin θ

Notice that the trigonometric functions come in reciprocal pairs. The cosecant is the recip-
rocal of the sine, the secant is the reciprocal of the cosine and the cotangent is the reciprocal
of the tangent. These reciprocal relations are presented below.

Reciprocal Trigonometric Identities

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

sin θ =
1

csc θ
cos θ =

1

sec θ
tan θ =

1

cot θ

There is a set of important identities known as the Pythagorean identities . They come
from using the Pythagorean theorem on the trigonometric functions. We will state them
here and then prove them.

Pythagorean Identities

sin2 θ + cos2 θ = 1 1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

We should say something about the notation here. When we write sin2 θ what we mean is
(sin θ)2.

Example 1.2.8
Show that sin2 θ + cos2 θ = 1

Solution: Consider our standard right triangle:

θ

adjacent

opposite

hypote
nuse

The Pythagorean theorem states that

opposite2 + adjacent2 = hypotenuse2

Lets look at sin2 θ+ cos2 θ and replace the trigonometric func-
tions with the appropriate ratios.
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sin2 θ + cos2 θ =

(
opposite

hypotenuse

)2

+

(
adjacent

hypotenuse

)2

=
(opposite)2

(hypotenuse)2 +
(adjacent)2

(hypotenuse)2

=
(opposite)2 + (adjacent)2

(hypotenuse)2

Now we can use the Pythagorean theorem to replace (opposite)2 + (adjacent2) with
(hypotenuse)2 and we see that

sin2 θ + cos2 θ =
(hypotenuse)2
(hypotenuse)2 = 1

Example 1.2.9
Show that tan2 θ + 1 = sec2 θ

Solution: We will start with sin2 θ + cos2 θ = 1 and divide by cos2 θ on both sides.

sin2 θ + cos2 θ

cos2 θ
=

1

cos2 θ
=⇒ sin2 θ

cos2 θ
+

cos2 θ

cos2 θ
=

1

cos2 θ
=⇒ tan2 θ + 1 = sec2 θ

We can similarly show that 1 + cot2 θ = csc2 θ.

Note: The relations and identities presented in this section appear frequently in our study
of trigonometry and it will be useful to memorize them.

1.2 Exercises

1. Fill in the missing word(s) for the fractions.

(a) sin θ = hypotenuse (b) csc θ = opposite

(c) cos θ =
adjacent (d) sec θ = adjacent
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(e) tan θ = adjacent (f) cot θ =

For Exercises 2 - 9, find the values of all six trigonometric functions of angles A and B in
the right triangle △ABC in Figure 1.14

A

B Ca

b
c

Figure 1.14

2. a = 5, b = 6 3. a = 5, c = 6

4. a = 6, b = 10 5. a = 6, c = 10

6. a = 7, b = 24 7. a = 1, c = 2

8. a = 5, b = 12 9. b = 24, c = 36

For Exercises 10 - 17, find the values of the other five trigonometric functions of the acute
angle 0 ≤ θ ≤ π

2
given the indicated value of one of the functions.

10. sin θ = 3
4

11. cos θ = 3
4

12. tan θ = 3
4

13. cos θ = 1
3

14. tan θ = 12
5

15. cos θ =
√
5
5

16. sin θ =
√
2
3

17. cos θ = 3√
17

18. Suppose that for acute angle θ you know that sin θ = x. Find a simplified algebraic
expression for both cos θ and tan θ. (Hint: draw a triangle where the ratio of the opposite
to the hypotenuse is x

1
.)

For Exercises 19 - 24, use the special triangles to fill in the following table.
(0 ≤ θ ≤ 90◦, 0 ≤ θ ≤ π/2)

Function θ (deg) θ (rad) Function Value

19. sin θ 45◦

20. sec θ 60◦

21. tan θ π

6

22. csc θ π

4

23. cot θ 1

24. cos θ
√
2

2
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25. Using the special triangles, determine the exact value of side a and side b in Figure 1.15.
Express your answer in simplified radical form.

26. Using the special triangles, determine the exact value of segment DE in Figure 1.16.
Segments BA and BC have length 4. Express your answer in simplified radical form.

30◦ 30◦

a
20m

b

Figure 1.15: Problem 25

30◦

A

B

C

D E

4m

4m

15◦

Figure 1.16: Problem 26

27. A metal plate has the form of a quarter circle with a radius of 100 cm. Two 3 cm holes are
to be drilled in the plate 95 cm from the corner at 30◦ and 60◦ as shown in Figure 1.17.
To use a computer controlled milling machine you must know the Cartesian coordinates
of the holes. Assuming the origin is at the corner what are the coordinates of the holes
(x1, y1) and (x2, y2)? (Round to 3 decimal places.)

x

y

100

100cm

95

95cm

30◦
30◦

30◦
(x1, y1)

(x2, y2)

Figure 1.17: Problem 27
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1.3 Trigonometric Functions of Any Angle

So far we have only looked at trigonometric functions of acute (less than 90◦) angles. We
would like to be able to find the trigonometric functions of any angle.

To do this follow these steps:

1. Draw the angle in standard position on the coordinate axes

2. Draw a reference triangle and find the reference angle

3. Label the reference triangle

4. Write down the answer

OR use your calculator.

x

y

0

QI

x > 0

y > 0

QII

x < 0

y > 0

QIII

x < 0

y < 0

QIV

x > 0

y < 0

Figure 1.18: Cartesian
plane divided into 4
quadrants

Note: Your calculator will only give you decimal approxima-
tions but, where possible, the answers will be exact. For exam-
ple if you ask your calculator for cos (30◦) it might return an
answer of 0.86602540378 whereas in this text we will present
the answer as

√
3
2

Before we can talk about reference triangles and reference an-
gles we need to review the coordinate plane. We can define the
trigonometric functions of any angle in terms of Cartesian
coordinates. You will recall that the xy - coordinate plane
(Cartesian coordinates) consists of points represented as coor-
dinate pairs (x, y) of real numbers. The plane is divided into
4 quadrants called quadrants 1 through 4 (see Figure 1.18).
These are often abbreviated QI, QII, QIII and QIV or 1st
2nd 3rd 4th.

Reference Angles

Definition 1.2. If you draw the angle θ in the standard position (see Definition 1.1) its
reference angle is the acute angle θ′ formed by the terminal side of θ and the horizontal
axis. The reference angle is always positive and always between 0 and 90◦

(or between 0 and π

2
).

Definition 1.3. The reference triangle is the triangle which is formed by drawing a
perpendicular line from any point (x, y) on the terminal side of θ in standard position to the
horizontal axis (x-axis).
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x

y

0

θ

r

opposite

adjacent

θ′(y)

(x)

reference triangle

reference
angle θ′

(x, y)

Figure 1.19: Quadrant II reference triangle

x

y

0

θ

r

opposite

adjacent

(y)

(x)

θ′

reference triangle

reference
angle θ′

(x, y)

Figure 1.20: Quadrant IV reference triangle

Figure 1.19 is a reference angle and triangle in the 2nd quadrant. Figure 1.20 is a reference
angle and triangle in the 4th quadrant:

The size of the reference angle in the second quadrant (QII) will be 180−θ or π−θ depending
on whether the angle is given in degrees or radians respectively.

The size of the reference angle in the fourth quadrant (QIV) will be 360 − θ or 2π − θ
depending on whether the angle is given in degrees or radians respectively.

What formula will give you the size of a reference angle in the third quadrant?

The six trigonometric functions can be defined in the same way as before but now the lengths
are read off the reference triangle. Since the coordinates (x, y) can be negative, when we
take the ratios of the sides of the triangle we often find negative results. The distance from
the origin to the point (x, y) is the hypotenuse and is always a positive value (r > 0). The
trigonometric functions of θ are as follows.

The Six Trigonometric Functions for Any Angle θ

sin θ =
opposite

hypotenuse =
y

r
cos θ =

adjacent
hypotenuse =

x

r
tan θ =

opposite
adjacent =

y

x

csc θ =
hypotenuse

opposite =
r

y
sec θ =

hypotenuse
adjacent =

r

x
cot θ =

adjacent
opposite =

x

y

Example 1.3.1
Sketch the following angles in standard position. Draw the reference triangles and find the
size of the reference angles:

(a) θ = 309◦

Solution: The reference angle will be θ′ = 360− 309 = 51◦ Figure 1.21 (a)
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(b) θ = −7π

4

Solution: The reference angle will be θ′ = 2π − 7π
4
= π

4
Figure 1.22 (b)

x

y

0

309◦

51◦

reference triangle

reference
angle θ′

Figure 1.21: Example 1.3.1 (a)

x

y

0

− 7π
4 π

4

reference trianglereference
angle θ′

Figure 1.22: Example 1.3.1 (b)

x

y

0

θ = 4π
3

π
3

reference triangle

reference
angle θ′

(c) θ =
10π

3

Solution: This angle is larger than one full revo-
lution so we need to find a coterminal angle that is
between 0 and 2π (one time around the circle) to
find it in standard position. To do this we subtract
multiples of 2π until our angle is less than 2π.

10π

3
− 2π =

10π

3
− 6π

3
=

4π

3

Since 10π

3
is coterminal with 4π

3
, to find the refer-

ence angle start with the coterminal angle 4π

3
and

subtract π to get
θ′ =

4π

3
− π =

π

3
:

Now we will use these reference angles to find the values of some trigonometric functions.
We can follow the steps outlined at the beginning of the section:

1. Draw the angle in standard position on the coordinate axes

2. Draw a reference triangle and find the reference angle

3. Label the reference triangle

4. Write down the answer
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Example 1.3.2
Find the values of the six trigonometric functions for θ = 150◦.

x

y

0

150◦

30◦

−
√
3

2

1

(−
√
3, 1)

Solution:

1. Draw the angle in standard position

2. Draw the reference triangle and angle

3. Label the triangle. Here we will label using the
standard 30− 60− 90 triangle.

Note: The point we selected on the terminal side of our angle is (−
√
3, 1). Since the

adjacent side of the reference triangle is on the negative x-axis that side is labeled as −
√
3.

This is VERY IMPORTANT. You will notice that this makes the cosine, secant, tangent
and cotangent negative.

4. Find the 6 trigonometric functions by reading them off the reference triangle:

sin θ =
opposite

hypotenuse =
1

2
cos θ =

adjacent
hypotenuse =

−
√
3

2
tan θ =

opposite
adjacent = − 1√

3

csc θ =
hypotenuse

opposite =
2

1
sec θ =

hypotenuse
adjacent = − 2√

3
cot θ =

adjacent
opposite = −

√
3

1

Example 1.3.3

Find the values of the six trigonometric functions for θ = −π

4
. Note that the angle is

negative.

-π
4

x

y

0

√
2

1

−1

(1,−1)

Solution:

1. Draw the angle in standard position

2. Draw the reference triangle and angle

3. Label the triangle. Here we will label using the
standard 45− 45− 90 triangle.

NOTE: The point we selected on the terminal side of our angle is (1,−1). Since the opposite
side of the reference triangle is in the negative y direction that side is labeled as -1. This
is VERY IMPORTANT. You will notice that this makes the sine, cosecant, tangent and
cotangent negative.

4. Find the 6 trigonometric functions by reading them off the reference triangle:
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sin θ =
opposite

hypotenuse = − 1√
2

cos θ =
adjacent

hypotenuse =
1√
2

tan θ =
opposite
adjacent = −1

csc θ =
hypotenuse

opposite = −
√
2

1
sec θ =

hypotenuse
adjacent =

√
2

1
cot θ =

adjacent
opposite = −1

Example 1.3.4
Suppose the terminal side of negative angle θ passes through the point (2,−3). Sketch the
angle in standard position, draw a reference triangle and then find the exact values for the
sine, cosine and tangent of θ.

θ

x

y

0

√
13

−3

(2,−3)

−1 1 2

−1

−2

−3

Solution:

1. Draw the angle in standard position

2. Draw the reference triangle and angle

3. Label the triangle.

NOTE: The point we selected on the terminal side of our angle is
(2,−3). Since the opposite side of the reference triangle is in the negative
y direction that side is labeled as −3. This is VERY IMPORTANT. You
will notice that this makes the sine and tangent.

4. Now we can find the 3 trigonometric functions by reading them off the reference tri-
angle:

sin θ =
opposite

hypotenuse = −3
√
13

13
cos θ =

adjacent
hypotenuse =

2
√
13

13
tan θ =

opposite
adjacent = −3

2

Example 1.3.5

Find the values of the six trigonometric functions for θ =
π

2
.

x

y

θ = π
2

(0, 1)

Solution:

1. Draw the angle in standard position

2. Draw the reference triangle and angle

3. Label the triangle. The triangle is just a vertical line.

NOTE: We can select any point on the terminal side so the easiest point is probably (x, y) =
(0, 1). Here r = 1 because the length of the adjacent side is zero and the opposite side is the
same length as the hypotenuse. You could also use the Pythagorean theorem x2 + y2 = r2.

4. Find the 6 trigonometric functions by using the x, y, r version of the definitions:
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sin θ =
y

r
=

1

1
= 1 cos θ =

x

r
=

0

1
= 0 tan θ =

y

x
=

1

0
= undefined

csc θ =
r

y
=

1

1
= 1 sec θ =

r

x
=

1

0
= undefined cot θ =

x

y
=

0

1
= 0

It is important to notice that the tangent and the secant are undefined because division by
zero is not permitted. You can never divide by zero. This division by zero will show up at
each of the angles that terminate at one of the axes: 0◦, 90◦, 180◦, 270◦, 360◦ or in radians:
0, π

2
, π, 3π

2
, 2π.

Example 1.3.6
Suppose cos θ = −4

5
. Find the exact values of sin θ and tan θ.

Solution: The first thing we need to do is to draw a reference triangle. Since the cosine is
negative there are two choices for our terminal side of θ. One in the second quadrant and
one in the third quadrant. See Figure 1.23. We will need two reference triangles to find
the values of the missing trigonometric functions because the signs (+/-) will depend on the
quadrant. cos θ = −4

5
=

adjacent
hypotenuse so two of the three sides of the triangles are known.

Use the Pythagorean theorem to find the last side (−4)2 + y2 = 52 so y = 3 for the triangle
in QII or y = −3 for the triangle in QIII.

θ

θ′
x

y

5

−4

y = 3

(−4, 3)

(a) Solution in QII

θ

θ′
x

y

5

−4

y = −3

(−4,−3)

(b) Solution in QIII

Figure 1.23: cos θ = −4
5

Since there are two different triangles there are two different solutions to the prob-
lem. For the triangle in QII sin θ = 3

5
and tan θ = −3

4
. For the triangle in QIII

sin θ = −3
5

and tan θ = 3
4

.

What this has shown us is that we can determine the sign of the trigonometric functions by
the quadrant of the terminal side. When constructing the reference triangle, the hypotenuse
is always positive but the two legs can be either positive or negative depending on where
the triangle is drawn. In the first quadrant both legs are positive, in the second quadrant
the adjacent side (x) is negative (Figure 1.23(a)), in the third quadrant both legs (x and
y) are negative (Figure 1.23(b)) and in QIV the opposite side (y) is negative. Since the
trigonometric functions are ratios of the sides of the reference triangle then All the functions
are positive in the first quadrant, the Sine is positive in the second, the Tangent is positive
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in the third and the Cosine is positive in the fourth. This information is summarized
in Figure 1.24. The mnemonic All Students Take Calculus tells you which function is
positive in which quadrant.

x

y

0

QI
sin θ +
cos θ +
tan θ +
A (all)

QII
sin θ +
cos θ −
tan θ −
S (students)

QIII
sin θ −
cos θ −
tan θ +
T (take)

QIV
sin θ −
cos θ +
tan θ −
C (calculus)

Figure 1.24: The signs of the trigonometric functions

Since csc θ =
1

sin θ
then the cosecant has the same sign as the sine function. Similarly sec θ

has the same sign as cos θ and cot θ has the same sign as tan θ.

Example 1.3.7
Suppose csc θ = 4 and cot θ > 0. Find the values of the six trigonometric functions for θ.

θθ′

x

y

4

x =
√
15

1

(
√
15, 1)

Solution:

Since the csc θ = 4 the sine is positive so θ is in quadrant I
or II. Since the cot θ > 0 the tangent is positive so θ is in
quadrants I or III .

The overlap of these two regions is quadrant I so we can
draw our triangle knowing that csc θ = 4

1
= hypotenuse

opposite . To solve for x we use the Pythagorean
theorem: 12+x2 = 42 so x =

√
15. Since we are in the first quadrant all sides of the triangle

will be positive.

sin θ =
opposite

hypotenuse = 1
4

cos θ =
adjacent

hypotenuse =
√
15
4

tan θ =
opposite
adjacent = 1√

15

csc θ =
hypotenuse

opposite = 4 sec θ =
hypotenuse

adjacent = 4√
15

cot θ =
adjacent
opposite =

√
15
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1.3 Exercises

1. In which quadrant(s) do sine and cosine have the same sign?

2. In which quadrant(s) do sine and cosine have the opposite sign?

3. In which quadrant(s) do sine and tangent have the same sign?

4. In which quadrant(s) do sine and tangent have the opposite sign?

5. In which quadrant(s) do cosine and tangent have the same sign?

6. In which quadrant(s) do cosine and tangent have the opposite sign?

For Exercises 7 - 11, find the reference angle for the given angle.

7. 127◦ 8. 250◦ 9. −250◦ 10. 882◦ 11. −323◦

12. Let (−3, 4) be a point on the terminal side of θ. Find the exact values of sin θ, cos θ, and
tan θ without a calculator.

13. Let (−12,−5) be a point on the terminal side of θ. Find the exact values of sin θ, cos θ,
and tan θ without a calculator.

14. Let (8,−15) be a point on the terminal side of θ. Find the exact values of sin θ, cos θ,
and tan θ without a calculator.

For Exercises 15 - 24,

a) Find the reference angle for the given angle.

b) Draw the reference triangle and label the sides

c) Find the exact values of sin θ, cos θ, and tan θ without a calculator.

15. 30◦ 16. 135◦ 17. −150◦ 18. −45◦ 19. 945◦

20. π
4

21. −2π
3

22. 7π
6

23. −29π
3

24. 29π
4

For Exercises 25 - 29, find the values of sin θ and tan θ given the following cos θ values.

25. cos θ = 3
4

26. cos θ = −3
4

27. cos θ = 1
4

28. cos θ = 0 29. cos θ = 1

For Exercises 30 - 34, find the values of cos θ and tan θ given the following sin θ values.

30. sin θ = 3
4

31. sin θ = −3
4

32. sin θ = 1
4

33. sin θ = 0 34. sin θ = 1

For Exercises 35 - 39, find the values of sin θ and cos θ given the following tan θ values.



1.3 Trigonometric Functions of Any Angle 31

35. tan θ = 3
4

36. tan θ = −3
4

37. tan θ = 1
4

38. tan θ = 0 39. tan θ = 1

For Exercises 40 - 44, find the values of the six trigonometric fucntions of θ with the given
restriction.

Function Value Restriction

40. sin θ =
15

17
tan θ < 0

41. sec θ = −15

12
sin θ < 0

42. tan θ =
20

21
csc θ > 0

43. cos θ = −20

21
csc θ > 0

44. sec θ is undefined π ≤ θ ≤ 3π
2

For Exercises 45 - 54, use a calculator to evaluate the following trigonometric functions.
Round your answer to 4 decimal places.

45. sin 127◦ 46. cos 250◦ 47. csc (−250◦) 48. cot 882◦ 49. sec (−323◦)

50. tan
(π
5

)
51. cot

(
−π

5

)
52. csc

(π
5

)
53. cotπ 54. sec

(
−14

5

)

Figure 1.25

55. In engineering the motion of the spring - mass - damper
system shown in Figure 1.25 can be modeled by the the
equation

x =
√
221e−0.2t cos (14t− 0.343)

where x is the position of the mass relative to equilibirum
(no motion), t is the time measured in seconds after the
system is set into motion and the angles are in radians.
Find the positions x of the mass when the time is

t = 1 sec, t = 5 sec, t = 10 sec, and t = 20 sec.

What does a negative position mean?
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1.4 The Unit Circle

Definition 1.4. The Unit Circle is a circle with radius 1. x2 + y2 = 1

x

y

(0, 1)

(1, 0)

(0,−1)

(−1, 0) θ

1

x

y

(x, y)

Figure 1.26: A circle of radius 1 with a reference triangle drawn in the first quadrant.

Every point (x, y) on the unit circle corresponds to some angle θ. For example:

Point (x, y) Angle θ

(1, 0) 0◦ or 0
(0, 1) 90◦ or π

2

(−1, 0) 180◦ or π

(0,−1) 270◦ or 3π
2

We can define trigonometric functions based on the coordinates of the point on the unit
circle which corresponds to the angle. Notice that since the circle has radius 1 the reference
triangle in Figure 1.26 above has hypotenuse 1, height length y and base length x. We can
now use the techniques from Section 1.3 to define the six trigonometric functions:

The Six Trigonometric Functions on the Unit Circle

sin θ = y csc θ =
1

sin θ
=

1

y

cos θ = x sec θ =
1

cos θ
=

1

x

tan θ =
y

x
cot θ =

1

tan θ
=

x

y

Then every point on the unit circle is (x, y) = (cos θ, sin θ) for some angle θ.
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We can use the two special triangles we looked at in Section 1.2 to fill in the unit circle for
many “standard” angles. In the following diagram, each point on the unit circle is labeled
with its coordinates (x, y) = (cos θ, sin θ) (exact values) and, with the angle in degrees and
radians.

x

y

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

360◦

45◦135◦

225◦ 315◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3
2 ,

1
2

)
(√

2
2 ,
√
2
2

)
(

1
2 ,
√
3
2

)

(
−
√
3
2 ,

1
2

)
(
−
√
2
2 ,
√
2
2

)
(
− 1

2 ,
√
3
2

)

(
−
√
3
2 ,−

1
2

)
(
−
√
2
2 ,−

√
2
2

)
(
− 1

2 ,−
√
3
2

)

(√
3
2 ,−

1
2

)
(√

2
2 ,−

√
2
2

)
(

1
2 ,−

√
3
2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Figure 1.27: The Unit Circle has radius 1. The coordinates on the circle give you the values of
the cosine and the sine of the angle θ. (x, y) = (cos θ, sin θ)

For any trigonometry problem involving one of the nice angles (multiples of 30◦, 45◦, or 60◦)
you can either use the unit circle or the triangle techniques in Section 1.3.

Example 1.4.1
Find the six trigonometric functions for the following angles:

1. θ = −2π

3
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Solution: θ = −2π

3
is coterminal with the angle 4π

3
which corresponds to the point(

−1
2
,−

√
3
2

)
= (cos θ, sin θ) on the unit circle. Now the other trigonometric functions

can be found from the identities.

sin θ = −
√
3

2
cos θ = −1

2
tan θ =

sin θ

cos θ
=

√
3

csc θ =
1

sin θ
= − 2√

3
sec θ =

1

cos θ
= −2 cot θ =

1

tan θ
=

1√
3

2. θ =
3π

4

Solution: θ = 3π
4

corresponds to the point
(
−

√
2
2
,
√
2
2

)
= (cos θ, sin θ) on the unit

circle.

sin θ =

√
2

2
cos θ = −

√
2

2
tan θ =

sin θ

cos θ
= −1

csc θ =
1

sin θ
=

√
2 sec θ =

1

cos θ
= −

√
2 cot θ =

1

tan θ
= −1

3. θ = 180◦

Solution: θ = 180◦ corresponds to the point (−1, 0) = (cos θ, sin θ) on the unit circle.

Note: We can not divide by zero so cosecant and cotangent are both undefined.

sin θ = 0 csc θ =
1

sin θ
= undefined

cos θ = −1 sec θ =
1

cos θ
= −1

tan θ =
sin θ

cos θ
= 0 cot θ =

1

tan θ
= undefined

4. θ =
3π

2

Solution: θ = 3π
2

corresponds to the point (0,−1) = (cos θ, sin θ) on the unit circle.
Since the tangent is undefined it would be difficult to find the reciprocal so instead use
the identity cot θ = cos θ

sin θ

sin θ = −1 csc θ =
1

sin θ
= −1

cos θ = 0 sec θ =
1

cos θ
= undefined

tan θ =
sin θ

cos θ
= undefined cot θ =

cos θ

sin θ
= 0
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Domain and Period of sine, cosine and tangent

Recall that the domain of a function f(x) is the set of all numbers x for which the function
is defined. For example, the domain of f(x) = sin x and f(x) = cos x is the set of all real
numbers, whereas the domain of f(x) = tan x is the set of all real numbers except x = ± π

2
,

± 3π
2

, ± 5π
2

, . . .. The range of a function f(x) is the set of all values that f(x) can take over
its domain. For example, the range of f(x) = sin x and f(x) = cos x is the set of all real
numbers between −1 and 1 (i.e. the interval [−1, 1]), whereas the range of f(x) = tan x is
the set of all real numbers. (Why?)

Recall that by adding or subtracting 360◦ or 2π to any angle you get back to the same angle
on the graph (coterminal). So the following relationships are true:

sin(x) = sin(x+ 2π) and cos(x) = cos(x+ 2π) (1.2)

In fact any integer multiple of 2π can be added to the angle to arrive at a coterminal angle.
Multiples of 2π are represented as

2nπ, where n ∈ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} .

The integers are represented by Z: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. We can abbreviate
the above multiples of 2π as:

2nπ, where n ∈ Z.

The relationships in equation (1.2) are said to be periodic with period 2π.

Definition 1.5. Functions that repeat values at a regular interval are called periodic.

Formally: A function f(x) is periodic if there exists a number C > 0 such that

f(x) = f(x+ C).

There can be many numbers C that satisfy the above requirement.

f(x) = sin x and f(x) = cos x are periodic with period 2π and f(x) = tan x is periodic with
period π.

Recall from algebra that even and odd functions have special properties when the sign of the
variable is changed. An even function satisfies the property f(x) = f(−x) so it returns
the same result with both positive and negative x values. An odd function is one that has
the property −f(x) = f(−x) so the function returns the negative result for −x. The cosine
and sine satisfy the same properties where:
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Negative Angle Identities

cosine is even cos(θ) = cos(−θ)

sine is odd − sin(θ) = sin(−θ)

tangent is odd − tan(θ) = tan(−θ)

You can see this by examining the corresponding values on the unit circle.

We can also construct what are known as cofunction identities which relate two different
functions.

Cofunction Identities Radians

sin
(
θ + π

2

)
= cos θ sin

(
θ − π

2

)
= − cos θ

cos
(
θ + π

2

)
= − sin θ cos

(
θ − π

2

)
= sin θ

tan
(
θ + π

2

)
= − cot θ tan

(
θ − π

2

)
= − cot θ

Cofunction Identities Degrees

sin (θ + 90◦) = cos θ sin (θ − 90◦) = − cos θ

cos (θ + 90◦) = − sin θ cos (θ − 90◦) = sin θ

tan (θ + 90◦) = − cot θ tan (θ − 90◦) = − cot θ

Example 1.4.2

Suppose cos(t) = −3

4
. Find (a) cos(−t), (b) sec(−t), (c) csc(90◦ − t) , (d) sin

(
t+ π

2

)
Solution:

(a) cos(−t) = cos(t) = −3

4
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(b) sec(−t) =
1

cos(−t)
= −4

3

(c) csc(90◦ − t) =
1

sin(90◦ − t)
=

1

sin[−(t− 90◦)]
=

1

− sin(t− 90◦)
=

1

cos(t)
= −4

3

(d) sin
(
t+

π

2

)
= cos(t) = −3

4

Example 1.4.3
Find cos(5π)

Solution: 5π is larger than 2π (one time around the circle) so we need to find a coterminal
angle θ between 0 and 2π. To do this subtract 2π until 0 ≤ θ < 2π.

θ = 5π − 2π − 2π = π

so
cos(5π) = cos(π) = −1

Example 1.4.4

Find sin

(
−9π

4

)
Solution: −9π

4
is not between 0 and 2π (one time around the circle) so we need to find

a coterminal angle between 0 and 2π. To do this add 2π to find an angle θ such that
0 ≤ θ < 2π.

θ = −9π

4
+ 2π + 2π =

7π

4

So
sin

(
−9π

4

)
= sin

(
7π

4

)
= −

√
2
2

1.4 Exercises

Fill in the blanks for problems 1 - 8.

1. Every point on the unit circle is (x, y) = for some angle θ.



38 Trigonometric Functions

2. The equation for the unit circle is .

3. The unit circle is a circle of radius .

4. Functions that repeat values at a regular interval are called .

5. An even function satisfies the property .

6. The range of y = cos x is .

7. The range of y = tan x is .

8. An odd function satisfies the property .

For Exercises 9 - 18, find the corresponding point (x, y) on the unit circle and then find the
the six trigonometric functions for the given angle.

9. α = 150◦ 10. θ = 135◦ 11. γ = −135◦ 12. β = 720◦ 13. α = −540◦

14. α =
3π

4
15. θ =

5π

3
16. γ = −5π

3
17. β = 17π 18. α = −11π

2

19. Suppose sin(t) = −3

4
. Find

a) sin(−t)

b) csc(−t)

c) sec(90◦ − t)

d) cos
(
t+ π

2

)
20. Suppose tan(t) = −3

4
. Find

a) tan(−t)

b) cot(−t)

c) tan(t− 90◦)

d) tan
(
t+ π

2

)
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1.5 Applications and Models

In general, a triangle has six parts: three sides and three angles. Solving a triangle means
finding the unknown parts based on the known parts. In the case of a right triangle, one
part is always known: one of the angles is 90◦. Later we will see how to do this when we do
not have a right triangle. We also know that the angles of a triangle add up to 180◦.

Example 1.5.1
Use the triangle in Figure 1.28 to solve the triangles for the missing parts.

A C

B

b

a
c

Figure 1.28

(a) c = 10, A = 22◦

Solution: The unknown parts are a, b, and B. Solving yields:

a = c sin A = 10 sin 22◦ = 3.75
b = c cos A = 10 cos 22◦ = 9.27
B = 90◦ − A = 90◦ − 22◦ = 68◦

(b) b = 8, A = 40◦

Solution: The unknown parts are a, c, and B. Solving yields:
a

b
= tan A ⇒ a = b tan A = 8 tan 40◦ = 6.71 = a

b

c
= cos A ⇒ c =

b

cos A
=

8

cos 40◦
= 10.44 = c

B = 90◦ − A = 90◦ − 40◦ = 50◦ = B

(c) a = 3, b = 4

Solution: The unknown parts are c, A, and B. By the Pythagorean Theorem,

c =
√
a2 + b2 =

√
32 + 42 =

√
25 = 5 .

Now, tan A = a
b
= 3

4
= 0.75. So how do we find A? There should be a key labeled

�� ��tan−1

on your calculator, which works like this: give it a number x and it will tell you the
angle θ such that tan θ = x. In our case, we want the angle A such that tan A = 0.75:

Press:
�� ��tan−1 Enter: 0.75 Answer: 36.86989765

This tells us that A = 36.87◦ . Thus B = 90◦ − A = 90◦ − 36.87◦ = 53.13◦ .

Note: The
�� ��sin−1 and

�� ��cos−1 keys work similarly for sine and cosine, respectively. These
keys use the inverse trigonometric functions. The inverse trigonometric functions will
be discussed in detail in Section 2.3.
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Example 1.5.2
Sandra is standing 150 feet from the base of a platform from which people are bungee
jumping. The angle of elevation2 from her horizontal line of sight to the top of the platform
from which they jump is 51◦. Assume her eyes are a vertical distance of 6 feet from the
ground. From what height are the people jumping?

150

51◦

6

h

Solution: The picture on the right describes the situation. We
see that the height of the platform is h+ 6 ft, where

h

150
= tan 51◦ ⇒ h = 150 tan 51◦ = 185ft .

We can calculate tan 51◦ by using a calculator. Be careful that
your calculator is in degree mode. Since none of the numbers we were given had decimal
places, we rounded off the answer for h to the nearest integer. Thus, the height of the
platform is h+ 6 = 185 + 6 = 191 ft .

Example 1.5.3
While visiting Cairo an ancient Greek mathematician wanted to measure the height of the
Great Pyramid of Giza. He was able to measure the length of one side of the pyramid to
be 230 meters. At that time the sun was about 25◦ above the horizon and the shadow cast
by the pyramid extended 200 meters from its base. Using trigonometry what height did the
mathematician calculate for the pyramid?

25◦

230m shadow

h

Solution: The picture on the right describes the
situation. We need to measure the distance from
the middle of one edge of the pyramid to the end of
the shadow. Thus the length of the adjacent side of
the triangle is 115 + 200 and we can use the tangent
function to write an equation relating the height and
the adjacent side:

h

315
= tan 25◦ ⇒ h = 315 tan 25◦ = 146.9m .

We can calculate tan 25◦ by using a calculator. Again, be careful that your calculator is in
degree mode. Since none of the numbers we were given had decimal places, we round off the
answer for h to the nearest integer. Thus, the height of the pyramid is about h = 147 m .

Example 1.5.4
A blimp 4280 ft above the ground measures an angle of depression of 24◦ from its horizontal
line of sight to the base of a house on the ground. Assuming the ground is flat, how far away
along the ground is the house from the blimp?

2The angle of elevation is the angle made from the horizontal looking up to some object. Similarly the
angle of depression is the angle from the horizontal looking down to some object.
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24◦

42804280

θ

x

Solution: Let x be the distance along the ground from the
blimp to the house, as in the picture to the right. Since the
ground and the blimp’s horizontal line of sight are parallel,
we can construct the rectangle shown. Using 4280 ft as the
opposite side and x as the adjacent we can use the tangent to
calculate the desired distance. (Note: Alternatively, we know
from elementary geometry that the angle of elevation θ from the base of the house to the
blimp is equal to the angle of depression from the blimp to the base of the house and this
gives us the lower triangle i.e. θ = 24◦.) Hence,

4280

x
= tan 24◦ ⇒ x =

4280

tan 24◦
= 9613 ft .

Example 1.5.5
A roadway sign at the top of a mountain indicates that for the next 4 km the grade is 12%3.
Find the change in elevation for a car descending the mountain.

Solution: Even though the road probably winds around the mountain and the slope is not
exactly 12% everywhere we can assume that if we straighten out the road it is 4 km long
and descends at a constant rate of 12

100
. If we draw a triangle for the grade the opposite side

would be 12 and the adjacent side would be 100. Using the Pythagorean theorem we can
find that the hypotenuse is h =

√
122 + 1002 =

√
10144. If we call the angle of elevation α

then we can find the value of any trigonometric function for α from our triangle. The second
triangle represents the the mountain where the hypotenuse is the length of the road, 4 km.

α

100

12

√
10144

(a) The grade is 12%

α

Elevation (E)
4

(b) The car travels 4km along
the road

Figure 1.29: Figures for Example 1.5.5

The sine function relates the opposite side to the hypotenuse so we can set up two equations
for the sinα using both triangles. To make the calculations easier we convert km to m by
multiplying by 1000.

sinα =
12√
10144

=
E

4000m

E = 4000

(
12√
10144

)
E = 477 m

3The grade is the slope (rise over run) of the road. When expressed as a percentage: grade = 100
( rise

run
)



42 Trigonometric Functions

We round to the nearest meter because the length is probably not exactly 4.000 km. Also
note that we never found the value of α. We were able to find the value of sinα from the
triangle.

Example 1.5.6
A person standing 400 ft from the base of a mountain measures the angle of elevation from
the ground to the top of the mountain to be 25◦. The person then walks 500 ft straight back
and measures the angle of elevation to now be 20◦. How tall is the mountain?

h

500 400 x

20◦ 25◦

Solution: We will assume that the ground is flat and not
inclined relative to the base of the mountain. Let h be the
height of the mountain, and let x be the distance from the
base of the mountain to the point directly beneath the top
of the mountain, as in the picture on the right. Then we
see that

h

x+ 400
= tan 25◦ ⇒ h = (x+ 400) tan 25◦ , and

h

x+ 400 + 500
= tan 20◦ ⇒ h = (x+ 900) tan 20◦ , so

(x + 400) tan 25◦ = (x + 900) tan 20◦, since they both equal h. Use that equation to
solve for x:

x tan 25◦ − x tan 20◦ = 900 tan 20◦ − 400 tan 25◦

⇒ x =
900 tan 20◦ − 400 tan 25◦

tan 25◦ − tan 20◦
= 1378 ft

Finally, substitute x into the first formula for h to get the height of the mountain:

h = (1378 + 400) tan 25◦ = 1778 (0.4663) = 829 ft
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1.5 Exercises

A

B Ca

b
c

Figure 1.30

For Exercises 1 - 8, solve the right triangle △ABC in Figure 1.30
using the given information.

1. A = 35◦, b = 6 2. a = 5, B = 6◦

3. a = 1, B = 36◦ 4. A = 6◦, c = 10

5. c = 7, B = 24◦ 6. A = 1◦, a = 2

7. A =
π

4
, b = 12 8. B =

π

3
, c = 36

α β

h

x

Figure 1.31: Problems 9 - 11

For Exercises 9 - 11 find the length of x in Figure 1.31

9. α = 55◦ 30′, β = 62◦ 30′′, h = 15

10. α = 25◦, β = 30◦, h = 15

11. α = π/5, β = π/3, h = 15

12. To find the height of a tree, a person walks to a point 30 feet from the base of the tree,
and measures the angle from the ground to the top of the tree to be 29◦. Find the height
of the tree.

13. The angle of elevation to the top of a building is found to be 9 degrees from the ground
at a distance of 1 mile from the base of the building. Using this information, find the
height of the building.

14. The angle of elevation to the top of the Space Needle in Seattle is found to be 31 degrees
from the ground at a distance of 1000 feet from its base. Using this information, find the
height of the Space Needle.

15. A 33-ft ladder leans against a building so that the angle between the ground and the
ladder is 60◦. How high does the ladder reach up the side of the building?

16. A 23-ft ladder leans against a building so that the angle between the ground and the
ladder is 70◦. How high does the ladder reach up the side of the building?

17. As the angle of elevation from the top of a tower to the sun decreases from 64◦ to 49◦

during the day, the length of the shadow of the tower increases by 92 ft along the ground.
Assuming the ground is level, find the height of the tower.
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18. Find the length c in Figure 1.32 19. Find the length c in Figure 1.33

115

c

20◦ 25◦

Figure 1.32

75

c

25◦ 37◦

Figure 1.33

A B

C

500

w

56◦ 41◦

Figure 1.34

20. Two banks of a river are parallel, and the distance between
two points A and B along one bank is 500 ft. For a point C
on the opposite bank, ∠ BAC = 56◦ and ∠ ABC = 41◦, as
in Figure 1.34. What is the width w of the river?
(Hint: Divide AB into two pieces.)

x

100 m

h

a

40◦

20◦

Figure 1.35

21. A person standing on the roof of a 100 m building
is looking towards a skyscraper a few blocks away,
wondering how tall it is. She measures the angle of
depression from the roof of the building to the base
of the skyscraper to be 20◦ and the angle of elevation
to the top of the skyscraper to be 40◦. Calculate the
distance between the buildings x and the height of
skyscraper h. See Figure 1.35.

O

sun

moon

A

α

φ

di
st
an
ce

to
su
n

Figure 1.36

22. 2200 years ago the greek Aristarchus realized that using trigonom-
etry it is possible to calculate the distance to the sun.4 Let O
be the center of the earth and let A be the center of the moon.
Aristarchus began with the premise that, during a half moon,
the moon forms a right triangle with the Sun and Earth. By
observing the angle between the Sun and Moon, ϕ = 89.83◦ and
knowing the distance to the moon, about 239,000 miles5 it is
possible to estimate the distance from the center of the earth
to the sun. Estimate the distance to the sun using these values.
See Figure 1.36.

4https://en.wikipedia.org/wiki/On_the_Sizes_and_Distances_(Aristarchus)
5https://en.wikipedia.org/wiki/Lunar_distance_(astronomy)

https://en.wikipedia.org/wiki/On_the_Sizes_and_Distances_(Aristarchus)
https://en.wikipedia.org/wiki/Lunar_distance_(astronomy) 
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2000 ft
hα β

(

Figure 1.37

23. A plane is flying 2000 feet above sea level to-
ward a mountain as shown in Figure 1.37.
The pilot observes the top of the mountain to
be α = 18◦ above the horizontal, then imme-
diately flies the plane at an angle of β = 20◦

above horizontal. The airspeed of the plane is
100 mph. After 5 minutes, the plane is directly
above the top of the mountain. How high is the plane above the top of the mountain
(when it passes over)? What is the height of the mountain?

Figure 1.38

24. Parallax is a displacement or difference in the apparent posi-
tion of an object viewed along two different lines of sight.6 (A
simple everyday example of parallax can be seen in the dash-
board of motor vehicles that use a needle-style speedometer
gauge. When viewed from directly in front, the speed may
show exactly 60; but when viewed from the passenger seat
the needle may appear to show a slightly different speed,
due to the angle of viewing.) Parallax can be used to calcu-
late the distance to near stars. By measuring the distance
a star moves when taking two observations when the earth
is on opposite sides of the sun we can calculate the paral-
lax angle. Figure 1.38 shows the parallax angle labeled
p. Knowing that the distance from the earth to the sun is
about 92,960,000 miles how far is it from the sun to a star
that creates a parallax angle p = 1′′ (one second)? This is a
distance known as 1 parsec.7

6https://en.wikipedia.org/wiki/Parallax
7https://en.wikipedia.org/wiki/Parsec
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Chapter 2

Graphs and Inverse Functions

2.1 Graphs of Sine and Cosine

Basic Sine and Cosine Graphs

We can graph trigonometric functions the same as we can graph any other function. We will
graph the trigonometric functions on the xy-plane and the x coordinate will always be in
radians. We will demonstrate two ways to look at the graph of y = sin x. First we will plot
points by selecting angle values for x and calculating the y values. Second we will use the
unit circle.

The following table ( Table 2.1 ) is a list of common angles and their trigonometric function
values.

Table 2.1: Table of Common Trigonometric Function Values

θ radians y = sin θ y = cos θ y = tan θ

0 0 1 0

π
6

1
2

√
3
2

1√
3

π
4

1√
2

1√
2

1

π
3

√
3
2

1
2

√
3

π
2

1 0 undefined
2π
3

√
3
2

−1
2

−
√
3

3π
4

1√
2

− 1√
2

−1

5π
6

1
2

−
√
3
2

− 1√
3

π 0 −1 0

continued on next page
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Table 2.1: Common trigonometric function values continued

θ radians y = sin θ y = cos θ y = tan θ

7π
6

−1
2

−
√
3
2

1√
3

5π
4

− 1√
2

− 1√
2

1

4π
3

−
√
3
2

−1
2

√
3

3π
2

−1 0 undefined
5π
3

−
√
3
2

1
2

−
√
3

7π
4

− 1√
2

1√
2

−1

11π
6

−1
2

√
3
2

− 1√
3

Using the numbers in Table 2.1 we can plot the sine function from 0 ≤ x ≤ 2π. In Figure
2.1 the points are indicated on the graph and some have been labeled. We saw in Section 1.4
that the trigonometric functions are periodic. This means that the values repeat at regular
intervals. The sine repeats every 2π radians so this graph repeats forever in both directions
as seen in in Figure 2.3.

θ

f(θ)

0

1

1

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

f(θ) = sin θ

(π
2
, 1)(π

3
,

√
3
2
)

(π
6
, 1

2
)

(π
4
,

√
2

2
)

( 3π
2
, −1)

( 4π
3
, −

√
3

2
)

( 7π
6
, − 1

2
)

( 5π
4
, −

√
2

2
)

Figure 2.1: Graph of y = sinx for 0 ≤ x ≤ 2π

Another way to consider the graph of the sine is to remember that every point on the unit
circle (circle of radius 1) is (x, y) = (cos θ, sin θ) on the terminal side of θ. Here you can see
how for each angle, we use the y value of the point on the circle to determine the output
value of the sine function. The correspondence is shown in Figure 2.2.

It is most common to use the variable x and y to represent the horizontal and vertical axes
so we will relabel the axes when we draw the graphs of the trigonometric functions from now
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θ

f(θ)

0

1

π
6

π
3

π
2

2π
3

5π
6

π

f(θ) = sin θ

π
6

π
3

π
2

0
1

1

x2 + y2 = 1

θ

Figure 2.2: Graph of sine function based on y-coordinate of points on unit circle

on. In our graph in Figure 2.3 we have plotted both positive an negative angles. You will
notice that if you pick any starting x value and move 2π units in either direction the values
of the function are the same because the period of the sine function in 2π.

WARNING: Be careful because we reuse variables. x and y are used to represent the
cosine and sine on the unit circle but here x is the angle and y is the trigonometric value of
that angle.

x

y

0

−1

1

π
2

π 3π
2

2π−π
2

−π− 3π
2

−2π

y = sin x

Figure 2.3: Graph of sine function where x is the angle and y = sinx

Similarly we can construct a graph for the cosine function. Note that the cosine function has
the same shape as the sine function but it is shifted π

2
units to the left. From algebra you

may recall that a π

2
shift to the left can be represented f

(
x+ π

2

)
= sin

(
x+ π

2

)
= cos(x).

This is the same cofunction identity presented in Section 1.4.

Both the sine and cosine functions alternate between +1 and −1 passing through zero at
regular points. When we label the axes of the graphs we want to make sure we label the
angles where the functions are 0, 1 or −1 on the x-axis and the values for the maximum,
minimum and center line for the y-axis. You can certainly include more labels but this would
generally be the minimum amount of information for a graph. Notice that all the multiples
of π

2
have been labeled on the graphs in Figures 2.3 and 2.4.
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x

y

0

−1

1

π
2

π 3π
2

2π−π
2

−π− 3π
2

−2π

y = cos x

Figure 2.4: Graph of cosine function where x is the angle and y = cosx

Algebraic Transformations

The graphs can be altered by standard algebraic transformations. A function may be
stretched or compressed vertically by multiplying it by a number.

Stretching the function f(x) vertically

h(x) = A · f(x) stretches f(x) vertically by a factor of A.

In the case of the sine and cosine this has the effect of making the amplitude of the function
larger or smaller. The amplitude of the function is the distance from the center line to the
maximum height. It can be calculated using the formula:

amplitude of f(x) = (maximum of f(x))− (minimum of f(x))
2

Since −1 ≤ sinx ≤ 1 and −1 ≤ cosx ≤ 1 then for any A > 0

−A ≤ A sinx ≤ A and −A ≤ A cosx ≤ A

Notice that the x-axis is labeled at the maximums, minimums and zeros of the function in
Figure 2.5.

x

y

0

|A|

−|A|

π
2

π 3π
2

2π 5π
2

π 7π
2

4π
2 |A|

|A|

|A|

Figure 2.5: The amplitude of a graph max−min
2 = |A|
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Example 2.1.1
Sketch the graph of y = 2 cos x for two complete cycles.

Solution: Since the period of the cosine is 2π two complete cycles can be 0 ≤ x ≤ 4π. We
could have also done negative angles and graphed −2π ≤ x ≤ 2π.

x

y

0

2

−2

π
2

π 3π
2

2π 5π
2

3π 7π
2

4π

Figure 2.6: y = 2 cosx

A function may be shifted up or down by adding or subtracting a number on the outside.

Moving the function f(x) up and down

h(x) = f(x) +D moves f(x) up ”D” units.

h(x) = f(x)−D moves f(x) down ”D” units.

Example 2.1.2
Sketch the graph of y = 2 cos x+ 3

Solution: This is the same graph as Example 2.1.1 but moved up 3 units. It has the same
amplitude A = 2.

x

y

center line

0

2

1

3

4

5

π
2

π 3π
2

2π 5π
2

π 7π
2

4π

A = 2

A = 2
up 3

Figure 2.7: y = 2 cosx+ 3
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A function may be stretched or compressed horizontally by multiplying the variable by a
number.

Stretching the function f(x) horizontally

h(x) = f(B · x) stretches or compresses f(x) horizontally by a factor of 1
B

.

If B > 1 the function is compressed horizontally and if 0 < B < 1 the function is
stretched horizontally.

In the case of the sine and cosine multiplying the variable by a number B changes the period.
The period of y = sin(Bx) and of y = cos(Bx) is

period of y = sin(Bx) is 2π

B

period of y = cos(Bx) is 2π

B

Example 2.1.3
Sketch the graph of y = cos(2x) and y = cos x on the same set of axes.

Solution: Since we have a 2x inside the cosine it goes around the circle twice as fast which
is why in the space of 2π the graph will repeat twice. We will graph both y = cos x and
y = cos(2x) on the same set of axes.

x

y

0

1

−1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y = cos(2x)

y = cosx

Figure 2.8: y = cos(2x) and y = cosx

A function may be reflected across the x-axis by multiplying by (−1). (Making it negative.)

Reflecting the function f(x) over the x-axis

h(x) = −f(x) reflects f(x) across the x-axis.
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Example 2.1.4
Sketch the graphs of y = − cos

(
x
2

)
and y = − cos

(
x
2

)
+3 on the same set of axes. Draw two

complete periods for each function.

Solution: Here we will have to adjust the period using the period formula period = 2π
B

.
Since we have cos

(
x
2

)
= cos

(
1
2
x
)

we can see that B = 1
2

and the period is = 2π
1/2

= 4π. The
function will repeat every 4π units. Since the horizontal axis is divided into 4 pieces for each
period those divisions are all of size π. See Figure 2.9.

x

y

center line

0

1

2

3

4

−1

π 2π 3π 4π 5π 6π 7π 8π

y = − cos
(
x
2

)

y = − cos
(
x
2

)
+ 3

Figure 2.9: y = − cos
(
x
2

)
and y = − cos

(
x
2

)
+ 3

A function may be shifted left or right by adding or subtracting a number on the inside.
This shift is called the phase shift .

Shifting the function f(x) left and right

h(x) = f(x+ C) moves f(x) to the left ”C” units.

h(x) = f(x− C) moves f(x) to the right ”C” units.

Example 2.1.5
Graph y = sin

(
x+ π

4

)
.

Solution: Since we have added π
4

inside the function the graph will be the same as the
graph of y = sin x but shifted to the left π

4
units. Rather than having zeros at 0, ±π and

±2π the zeros are now at −5π
4

, −π
4
, 3π

4
and 7π

4
. The graphs of both y = sin

(
x+ π

4

)
and

y = sin x are presented in Figure 2.10.
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x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

phase shift = −π
4

y = − sinx y = sin
(
x+ π

4

)

Figure 2.10: y = sin
(
x+ π

4

)
and y = sinx

Example 2.1.6
Graph y = 3 cos (2x− π) for two complete cycles.

Solution: Here we have to be careful because there are three of our transformations in the
same problem. First we need to identify the amplitude. That is given to us by the number
multiplied in front of the function so A = 3. The period is determined by the number
multiplied by the x, in this case B = 2. The period of the function is 2π

B
= π.

The phase shift is a bit more difficult because our original definition of phase shift was written
as f(x+C) but we don’t have that, we have f(2x+ ϕ). That 2 multiplied by the x is going
to influence our shift. We have to write the function as f(2(x+C)) to find the correct value
of the phase shift. To see why this is true let’s consider that the cosine function goes through
an entire cycle when its angle goes from 0 to 2π. In this case our angle is represented by
2x− π so that cycle starts when

2x− π = 0 =⇒ x =
π

2

and ends when
2x− π = 2π =⇒ x =

2π

2
+

π

2
= π +

π

2

Our phase shift is π
2

and the period is π which is exactly what we see when we write the
function as y = 3 cos

[
2
(
x− π

2

)]
.
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x

y

0

−3

−2

−1

1

2

3

π
2

π 3π
2

2π

period = π

phase shift = π
2

amplitude = 3

Figure 2.11: y = 3 cos (2x− π)

Summary of trigonometric transformations for sine and cosine.

Given the functions

y = A sin (Bx+ C) +D = A sin

(
B

(
x+

C

B

))
+D

or
y = A cos (Bx+ C) +D = A cos

(
B

(
x+

C

B

))
+D

the following transformations occur:

1. The amplitude of the function is |A|.

2. The period of the function is 2π

B

3. The phase shift of the function is −C

B
.

The shift is to the left for
(
x+ C

B

)
and to the right for

(
x− C

B

)
4. The vertical shift is D

A negative sign in front of the function will reflect it over the x-axis.
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Example 2.1.7
Find the amplitude, period and phase shift of y = −2 sin

(
3x+ π

2

)
Solution: The amplitude is 2, the period is 2π

3
, and the phase shift is −

π
2

3
= −π

6
. Since the

phase shift is negative we move the graph to the left. Or if you write the function as

y = −2 sin
(
3
(
x+

π

6

))
we are adding π

6
inside the sine function which is a shift to the left. Also note the negative

in front of the sine, this reflects the graph over the x-axis.

x
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0

−2

−1

1

2

−π
6

π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

period = 2π
3

phase shift = −π
6

amplitude = 2

Figure 2.12: y = −2 sin
(
3x+ π

2

)
= −2 sin

[
3
(
x+ π

6

)]

2.1 Exercises

For Exercises 1-12, determine the amplitude, period, vertical shift, horizontal shift, and draw
the graph of the given function for two complete periods.

1. y = 3 sin x 2. f(x) = −3 sin x 3. y = −3 sin(2x)

4. f(x) = −3 sin(2x) + 4 5. y =
cosx

4
6. y = cos

(
x
4

)
7. f(x) = 1

2
cosx− 4 8. y = 2 cos

(
x− π

4

)
9. g(x) = −3 + 2 cos

(
x− π

4

)
10. y = 2 sin

(
2x+ π

2

)
11. y = 1

2
sin
(
2x+ π

2

)
+ 1 12. y = 3 sin πt

3
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For Exercises 13-14, sketch f(x) and g(x) on the same set of axes for 0 ≤ x ≤ 2π.

13. f(x) = 2 sinx, g(x) = sin(2x) 14. f(x) = 3 cos(2x), g(x) = 3 cos(2x)− 2

For Exercises 15-19, determine the amplitude, period and vertical shift, then find a formula
for the function.
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18.
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19.

20. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 50 degrees at midnight and the high and low
temperature during the day are 57 and 43 degrees, respectively. Assuming t is the number
of hours since midnight, find a function for the temperature, D, in terms of t.

21. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 68 degrees at midnight and the high and low
temperature during the day are 80 and 56 degrees, respectively. Assuming t is the number
of hours since midnight, find a function for the temperature, D, in terms of t.
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22. Consider the device shown in Figure 2.13 for converting rotary motion to linear motion
(and vice versa). A nail on the edge of the wheel moves the arm back and forth. Relative
to the coordinates shown, derive an expression for the position of point P as a function
of the wheel radius R, the bar length L, and the angle θ.

x

y

R

P = (x, 0)

L

θ

Figure 2.13: Linear motion device
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2.2 Graphs of tan(x), cot(x), csc(x) and sec(x)

Tangent and Cotangent Graphs

The graph of the tangent can be constructed by plotting points from Table 2.1 or by using the
identity tanx =

sinx

cosx
. On the graph of the tangent notice that there are vertical asymptotes

at multiples of π

2
. This is because tanx =

sinx

cosx
and everywhere cosine is zero tangent is

undefined. You can see from the cosine graph that it has zeros at x =
π

2
+ nπ where n ∈ Z.

Also note that the period of the tangent function is π. The graph repeats every π units, it
is identical between any two asymptotes.
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−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y = tan x

Figure 2.14: Graph of y = tanx

We can perform similar transformations to what was done for the sine and cosine graphs.
Those transformations are summarized here:
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Summary of trigonometric transformations for tangent.

Given the function
y = A tan (Bx+ C) +D

the following transformations occur:

1. The amplitude of the function is undefined.
2. The period of the function is π

B

3. The phase shift of the function is C

B
.

4. The vertical shift is D

A negative sign in front of the function will reflect it over the x-axis.

Example 2.2.1
Find the amplitude, period, phase shift, and vertical shift for the function y = 1

2
tan (2x)− 3

Solution: The amplitude is undefined, the period is π
2
, there is no phase shift, and the

vertical shift is down 3 units.
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8
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period = π
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Figure 2.15: y = 1
2 tan (2x)− 3

The graph of the cotangent Figure 2.16 can be constructed by using the identity cotx =
cosx

sinx
or by using the relation cotx = − tan

(
x+ π

2

)
. On the graph of the cotangent notice

that there are vertical asymptotes at multiples of π. This is because cotx =
cosx

sinx
and

everywhere sine is zero the cotangent is undefined. y = sin x has zeros at x = π + nπ where
n ∈ Z so y = cot x has vertical asymptotes at x = π + nπ. Also note that the period of the
cotangent function is π. The graph repeats every π units, it is identical between any two
asymptotes.
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Figure 2.16: Graph of y = cotx

Cosecant and Secant Graphs

The graph of the cosecant can be constructed by using the identity cscx =
1

sinx
. On the

graph of the cosecant notice that there are vertical asymptotes at multiples of π. This is
because cscx =

1

sinx
and everywhere sine is zero the cosecant is undefined. The period of

the cosecant function is 2π which is the same as the sine function. The graph repeats every
2π units. Figure 2.17 shows the graph of y = csc x, with the graph of y = sin x (the dashed
curve) for reference.
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y = csc x

Figure 2.17: Graph of y = cscx in blue and y = sinx (dashed line)
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The graph of the secant can be constructed by using the identity secx =
1

cosx
. On the

graph of the secant notice that there are vertical asymptotes at multiples of π

2
because the

graph of y = cosx has zeros at x =
π

2
+nπ where n ∈ Z. The period of the secant function is

2π which is the same as the cosine function. The graph repeats every 2π units. Figure 2.18
shows the graph of y = sec x, with the graph of y = cos x (the dashed curve) for reference.
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y = sec x

Figure 2.18: Graph of y = secx

All the same transformations that were done to the sine, cosine and tangent can be done to
the other functions.

Summary of trigonometric transformations for cosecant, secant and cotangent

y = A csc (Bx+ C) has undefined amplitude, period 2π

B
and phase shift C

B

y = A sec (Bx+ C) has undefined amplitude, period 2π

B
and phase shift C

B

y = A cot (Bx+ C) has undefined amplitude, period π

B
and phase shift C

B

A negative sign in front of the function will reflect it over the x-axis.
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2.2 Exercises

For Exercises 1-9, determine the amplitude, period, vertical shift, horizontal shift, and draw
the graph of the given function for two complete periods.

1. y = 3 tan x 2. f(x) = −3 csc x 3. y = −3 sec(2x)

4. f(x) = −3 sec(πx) 5. y =
cotx

4
6. y = cot

(
x
4

)
7. y = tan

(
x+ π

4

)
8. y = 1

2
cot
(
x− π

4

)
9. y = sec(t) + 2
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2.3 Inverse Trigonometric Functions

Review of Functions and Inverse Functions

Definition 2.1. A function is a rule that establishes a correspondence between two sets
of elements (called the domain and range ) so that for every element in the domain there
corresponds EXACTLY ONE element in the range.

Often the domain is x and the range is y but any symbols can be used. With trigonometric
functions frequently θ or another Greek letter is used for the domain. For a function we can
have repeated range elements but all the domain elements are unique. For example with
f(x) = x2 both x = 2 and x = −2 are mapped to y = 4 when put into the function.

There is a special type of function known as a one-to-one (sometimes written 1−1) function
where all the range values are unique as well. In other words if x1 ̸= x2 then f(x1) ̸= f(x2).
The example above of f(x) = x2 is not a 1− 1 function because two different x values give
the same y value. Much like there was a vertical line test for functions we have a horizontal
line test for 1− 1 functions.

The vertical line test says that f(x) is a function if and only if every vertical line intersects
the graph of f(x) at most once. Similarly the horizontal line tests says that a function f(x)
is 1− 1 if every horizontal line intersects the graph at most once.

This idea of a 1 − 1 function is important when discussing inverse functions. An inverse
function is a function f−1(x) such that

f(f−1(x)) = x and f−1(f(x)) = x.

In other words if f is a function that takes x to y then the inverse function f−1 takes y back to
x. We need the original function to be 1− 1 because when we reverse the operation we want
to make sure we get a unique answer. In the f(x) = x2 example we can’t have an inverse
function because reversing the operation results in two x-values because f(2) = f(−2) = 4.

x

y

0

−1

1

π
2

π−π
2

−π

y = sin x

restricted domain −π
2
≤ x ≤ π

2

Figure 2.19: Restricted domain for sine

None of the trigonometric functions are 1−1.
Consider the sine function y = sin x. There
are an infinite number of x-values that will
produce every y value since the sine repeats
every 2π radians. If we want to reverse the
operation of the sine function with an inverse
sine function we will have to restrict the do-
main so that the original sine produces one
set of range values. We will make sure that
this restriction includes the angle zero. In
Figure 2.19 the extended dotted line is to
show that the sine function would fail the
horizontal line test and sine is 1− 1 on the domain −π

2
≤ x ≤ π

2
. It also shows that we have

one complete set of range values (−1 ≤ sinx ≤ 1) for the sine function.
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We will do the same for the cosine and tangent. Figure 2.20 shows the domain restrictions.

x

y

0

−1

1

π
2

π−π
2

3π
2

y = cos x

restricted domain 0 ≤ x ≤ π

(a) y = cosx

x

y

0

−3

−2

−1

1

2

3

π
4

π
2

−π
4

−π
2

y = tan x

(b) y = tanx

Figure 2.20: Restricted domains for cosine and tangent

Recall that there are two ways to find the inverse of a function. The graphical way to find
the inverse is to look at the graph and reflect it across the line y = x. The algebraic way to
solve for the inverse of a function is to switch the x and y coordinates and solve for y.

We can find inverse functions of the sine, cosine and tangent using the graphing method.
The graph of y = sin−1 x (sometimes called the arcsine and denoted y = arcsin x) is shown
in Figure 2.21. Notice the symmetry about the line y = x with the graph of y = sin x.

x

y

0

−1

1

−π
2

π
2

π
2

1−π
2

−1

y = sin−1 x

y = sin x

y = x

Figure 2.21: Graph of y = sin−1 x

The sine function gives you the ratio opposite
hypotenuse for some angle θ. The inverse sine function

give you the angle θ if you know the ratio opposite
hypotenuse . It is the reverse of the sine. It is often

good to think of y = sin−1 x as “the inverse sine of x is the angle whose sine is x.”

On your calculator these functions are not displayed as arc functions. Your calculator prob-
ably has keys that look like:

�� ��sin−1 ,
�� ��cos−1 and

�� ��tan−1 . These features are often found just
above the regular trigonometric function, but different models of calculator have it in differ-
ent places.
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The inverse sine function y = sin−1 x = arcsin x

The sine has restricted domain −π
2
≤ x ≤ π

2
and range −1 ≤ sinx ≤ 1. The inverse

sine is the function whose domain is −1 ≤ x ≤ 1 and whose range is −π
2
≤ sin−1 x ≤ π

2

such that

sin
(
sin−1 x

)
= x for − 1 ≤ x ≤ 1

and
sin−1 (sinx) = x for − π

2
≤ x ≤ π

2

There are a couple of important things to remember here.

Note 1: With the restriction we have put on the inverse sine, it is ONLY defined in quadrants
I and IV so all your answers for arcsine must lie between −π

2
and π

2
.

Note 2: The notation for inverse functions is to have an exponent of −1 on the function.
This should not be confused with the reciprocal of the function. If we want the reciprocal
of the sine we would write it one of the following ways:

1

sinx
= (sin x)−1 = csc x.

For this reason some prefer to write y = arcsinx and both are often used interchangeably
without warning.

The cosine is similar but in this case we restrict the domain to 0 ≤ x ≤ π because this
also gives us all the y values between 1 and 1. Figure: 2.22 It is often good to think of
y = cos−1 x as “the inverse cosine of x is the angle whose cosine is x.”

x

y

0

−1

1

π

π
2

1 π−π
2

−1

y = cos−1 x

y = cos x

y = x

Figure 2.22: Graph of y = cos−1 x = arccosx

Again we reflect this dotted curve across the line y = x to get the inverse cosine function.

Note: With the restriction we have put on the arccosine, it is ONLY defined in quadrants
I and II so all your answers for arccosine must lie between 0 and π.

The tangent has the same restrictions as the sine but in this case we have vertical asymptotes.
When we reflect across the line y = x the vertical asymptotes become horizontal asymptotes.
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It is often good to think of y = tan−1 x as “the inverse tangent of x is the angle whose tangent
is x.” See Figure: 2.23.

x

y

0

−3

−2

−1

1

2

3

π
2

−π
2

π
4

π
2

−π
4

−π
2

y = tan x

y = tan−1 x

y = x

Figure 2.23: Graph of y = tan−1 x = arctanx

Note: With the restriction we have put on the arctangent, it is ONLY defined in quadrants
I and IV so all your answers for arccosine must lie between −π

2
and π

2
.

Summary of inverse trigonometric functions

Function Definition In Words Range
sin−1 x = y x = sin y y is the angle whose sine is x −π

2
≤ y ≤ π

2

cos−1 x = y x = cos y y is the angle whose cosine is x 0 ≤ y ≤ π

tan−1 x = y x = tan y y is the angle whose tangent is x −π
2
≤ y ≤ π

2

Example 2.3.1

Find y when y = cos−1

(√
3

2

)

0

y
√
3

1
2

Solution: Step 1: Draw a triangle in the appropriate quadrant and

label the sides. Since cos−1 is defined in quadrant I and II and
√
3

2
is positive, we draw the triangle in quadrant I (See Figure at right).

Since we have the arccosine here we know that
√
3

2
=

adjacent
hypotenuse

and we can use the Pythagorean theorem to find the missing side.

Step 2: Identify the angle in the triangle. Very often it will be one of the special triangles.
In this case we have a 30− 60− 90 triangle so our angle is

y = 30◦ or y = π
6

.
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Example 2.3.2

Find y when y = cos−1

(
−
√
3

2

)

0

y (the angle)

−
√
3

1
2

Solution: Step 1: Draw a triangle in the appropriate quad-
rant and label the sides. Since cos−1 is defined in quadrant

I and II and −
√
3

2
is negative, we draw the triangle in quad-

rant II (See Figure at right). Since we have the arccosine

here we know that −
√
3

2
=

adjacent
hypotenuse and we can use the

Pythagorean theorem to find the missing side.

Step 2: Identify the angle in the triangle. In this case we have a 30− 60− 90 triangle again
so our reference angle is π

6
and the answer is

y = 5π
6

.

Notice that this falls in the range we want for answers to arccosine problems: 0 ≤ y ≤ π.

Example 2.3.3

Find y when y = sin−1

(
−
√
2

2

)

0 y

√
2

−
√
2

2

Solution: Step 1: Draw a triangle in the appropriate quadrant and

label the sides. Since sin−1 is defined in quadrant I and IV and −
√
2

2
is negative, we draw the triangle in quadrant IV (See Figure at right).

Since we have the arcsine here we know that −
√
2

2
=

opposite
hypotenuse

and we can use the Pythagorean theorem to find the missing side.

Step 2: Identify the angle in the triangle. In this case we have a
45− 45− 90 triangle so our reference angle is π

4
and the answer is

y = −π

4
.

Notice that this falls in the range we want for answers to arcsine problems: −π
2
≤ y ≤ π

2
.

Example 2.3.4
Evaluate sin−1(0.97) using your calculator.

Solution: Since the output of the inverse function is an angle, your calculator will give you
a degree value if in degree mode, and a radian value if in radian mode.

In radian mode, sin−1(0.97) ≈ 1.3252 In degree mode, sin−1(0.97) ≈ 75.93◦
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Example 2.3.5

Evaluate cos−1

(
cos

(
13π

6

))
Solution: Here we want to be careful. The cosine and arccosine are direct inverses of each
other only between 0 and π so our answer can’t be 13π

6
. What we need to do is to first

find the value of cos
(
13π

6

)
=

√
3

2
. Once we know this we are now looking for cos−1

(√
3

2

)
which we found in Example 2.3.1. So

cos−1

(
cos

(
13π

6

))
= cos−1

(√
3

2

)
=

π

6

Example 2.3.6
Find tan−1 (tanπ).

Solution: Since π > π
2
, tangent and arctangent are not direct inverses. But we know that

tanπ = 0. Thus, tan−1 (tan π) = tan−1 0 is, by definition, the angle y such that tan y = 0

where −π
2
≤ y ≤ π

2
. That angle is y = 0. Thus, tan−1 (tan π) = tan−1(0) = 0 .

Example 2.3.7
Evaluate sin−1 0

Solution: We need to find an angle −π
2
≤ θ ≤ π

2
such that sin θ = 0. The only angle that

satisfies this is θ = 0 .

Example 2.3.8
Evaluate tan−1(−1)

Solution: We need to find an angle −π
2
≤ θ ≤ π

2
such that tan θ = −1. The answer will be

in QIV: θ = −π
4

.

Example 2.3.9

Evaluate cos

(
sin−1

(
−3

4

))
Solution: We could do this problem the way we did the earlier examples where we drew a
triangle but another solution is to use one of our pythagorean identities from Section 1.2.

cos2 θ + sin2 θ = 1

Let θ = sin−1
(
−3

4

)
. Since sin(θ) = −3

4
we know that θ is in QIV so cos θ > 0 (positive).

Using our identity we can now calculate

cos2 θ = 1− sin2 θ = 1−
(
−3

4

)2

=
7

16
=⇒ cos θ =

√
7

4
.
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Note that we took the positive square root since cos θ > 0. Thus our answer is

cos

(
sin−1

(
−3

4

))
=

√
7

4

Example 2.3.10

Evaluate csc

(
tan−1

(
− 5

12

))

0 θ

12

−5

13

Solution: This problem is similar to Example 2.3.9 but
for this one we will construct a triangle to show a different
way to arrive at the solution.

Let θ = tan−1
(
− 5

12

)
. Then we can draw a triangle for θ

in QIV since
tan θ = − 5

12
=

opposite
adjacent .

Using the Pythagorean theorem we can find the hypotenuse length of 13. Now we can read

the cosecant off the triangle. csc θ =
hypotenuse

opposite =
13

−5

Example 2.3.11
Find a simplified expression for tan

(
sin−1 x

)
for −1 < x < 1

0

θ
√
1− x2

x
1

Figure 2.24

Solution: Let θ = sin−1 x. Then we can draw a triangle for θ since
we know that

sin θ =
x

1
=

opposite
hypotenuse .

There are two triangles we can draw, one in QI for 0 < x < 1 and
one in QIV for −1 < x < 0 but the adjacent side length is the same
for both so only the one in QI is presented in Figure 2.24.

The adjacent side length is calculated using the Pythagorean theorem and is
√
1− x2. Notice

that since the x is squared it is always positive no matter the sign of x. Then we can read
the tangent right off the graph and

tan
(
sin−1 x

)
=

x√
1− x2

for −1 < x < 1

Example 2.3.12
A cellular telephone tower that is 50 meters tall is placed on top of a mountain that is 1200
meters above sea level. What is the angle of depression to two decimal places from the top
of the tower to a cell phone user who is 5 horizontal kilometers away and 400 meters above
sea level?
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h

1200 m

400 m

50 m

5 km

θ

Figure 2.25

Solution: Figure 2.25 above describes the situation. We need to measure the distance from
the top of the hill to the top of the cellular tower marked h. Thus h = 1200+50−400 = 850m.
We also need to convert the horizontal distance to meters, 5 km = 5000 m and we can use
the tangent function to write an equation relating the height and the adjacent side:

850

5000
= tan θ ⇒ θ = tan−1

(
850

5000

)
= 9.65◦ .

We can calculate the inverse function by using a calculator, the inverse button looks some-
thing like:

�� ��tan−1 . Again, be careful that your calculator is in degree mode.
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2.3 Exercises

For Exercises 1-28, find the exact value of the given expression. If an answer is an angle
answer in radians.

1. tan−1 1 2. tan−1(−1) 3. tan−1 0 4. cos−1 1

5. cos−1(−1) 6. cos−1 0 7. sin−1 1 8. sin−1(−1)

9. cos−1
(√

3
2

)
10. cos−1

(
−
√
3

2

)
11. sin−1

(√
2
2

)
12. sin−1

(
−
√
2

2

)
13. sin−1 0 14. sin−1

(
sin π

3

)
15. sin−1

(
sin 4π

3

)
16. sin−1

(
sin
(
−4π

3

))
17. cos−1

(
cos π

5

)
18. cos−1

(
cos 6π

5

)
19. cos−1

(
cos
(
−π

5

))
20. tan−1

(
tan
(
−5π

6

))
21. tan−1

(
tan 5π

6

)
22. cos−1

(
sin 13π

6

)
23. sin−1

(
cos
(
−π

6

))
24. csc−1

(
sec
(
−5π

6

))
25. tan

(
sin−1 4

3

)
26. sin

(
tan−1 4

3

)
27. sin

(
cos−1

(
−3

5

))
28. cos

(
sin−1

(
−4

5

))
29. Find a simplified expression for cos

(
sin−1 x

)
for −1 ≤ x ≤ 1.

30. Find a simplified expression for cot
(
sin−1

(x
3

))
for −3 ≤ x ≤ 3.

31. Find a simplified expression for sin
(
cos−1 x

3

)
for −3 < x < 3.

32. Find a simplified expression for csc
(
tan−1

(x
2

))
.

33. The height of a playground basketball backboard is 12 feet 6 inches high. At 4:00 pm it
casts a shadow 15 feet long. What is the angle of elevation of the sun at that time?
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2.4 Solving Trigonometric Equations

To solve a trigonometric equation we use standard algebraic techniques such as combining
like terms and factoring. The first goal for any trigonometric equation is to isolate the
trigonometric function in the equation. We can’t algebraically solve for the variable from
inside a trigonometric function.

Example 2.4.1
Solve the equation 2 sin x+ 1 = 0

Solution: We have to have the trigonometric function by itself on one side of the equation
and the numbers on the other side. In this case we solve for

sinx = −1

2
.

When we have it in this form we can then decide what values of x will work here. In the
section on inverse functions (Section 2.3) we saw that we could ask our calculator for the
value

x = sin−1

(
−1

2

)
= −π

6
.

While it is true that this value of x satisfies the equation, it is not the complete solution. If
we plot the graph of y = sin x and y = −1

2
on the same set of axes we can find where they

intersect. Four of the solutions (x, y) are labeled (7π
6

, −1
2
), (11π

6
, −1

2
), (−π

6
, −1

2
), (−5π

6
, −1

2
)

x

y

0

−1

1

π 2π 3π 4π−π−2π−3π−4π

sin x = −1

2

( 7π
6
, − 1

2
) ( 11π

6
, − 1

2
)

(−π
6
, − 1

2
)

(− 5π
6
, − 1

2
)

x = 7π
6

+ 2π

x = 11π
6

+ 2π
x = 7π

6
− 4π

x = 11π
6

− 4π

Figure 2.26: Intersections of y = sinx and y = −1
2

and four more are indicated as multiples of 2π. There are an infinite number of solutions
because the graph of sine continues indefinitely in both directions and the line y = −1

2
will

intersect it an infinite number of times.

We need to have a way to describe all the solutions. Since the sine is periodic we know that
it repeats every 2π so our solutions will repeat every 2π. We find all the positive solutions
on one time around the circle x =

7π

6
and x =

11π

6
and then add multiples of 2π to it. Our

two solutions can be written:

x =
7π

6
+ 2nπ and x =

11π

6
+ 2nπ, where n ∈ Z
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x

y

x = 7π
6

2

−
√
3

−1

√
3

−1

x = 11π
6

2

Figure 2.27: Reference triangles for
Example 2.4.1

The graph of sine and cosine are not convenient for
finding the x-values that satisfy the equation. Most
often reference triangles or the unit circle are used.
In the previous example we wanted the solutions to
sinx = −1

2
=

opposite
hypotenuse and we can draw two ref-

erence triangles that satisfy this angle. We need two
because the sine is negative in both QIII and QIV.
See Figure 2.27.

These two triangles are recognizable as our 30-60-90
triangle and as such we can find the reference angle

π

6
and the two basic solutions x =

7π

6
and x =

11π

6
. From there the complete solution can

be written as above.

x =
7π

6
+ 2nπ and x =

11π

6
+ 2nπ, where n ∈ Z

Recall that the integers are represented by the symbol Z =0, ±1, ±2, ±3, ...

Example 2.4.2
Solve the equation 3 cot2 x− 1 = 0

Solution: Here we need to isolate the cotx on one side of the equation.

3 cot2 x− 1 = 0

3 cot2 x = 1

cot2 x =
1

3

cotx = ± 1√
3

There are two solutions because you always need to take into account both the positive and
negative answers when taking a square root. We can draw reference triangles for these two
solutions. There are 4 we could draw for 0 ≤ x < 2π, one in each quadrant. Figure 2.28
shows the solutions in QI and QIII for cotx = 1√

3
and solutions in QII and QIV for the

negative.

Cotangent has a period of π so we can start with two basic solutions x = π
3

and x = 2π
3

.
Then add multiples of π to each of these to get the general form:

x =
π

3
+ nπ and x =

2π

3
+ nπ, where n ∈ Z
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x

y

x = 4π
3

2
−
√
3

−1
2

√
3

1

x = π
3

cotx = 1√
3

x

y
x = 2π

3

2√
3

−1

2
−
√
3

1

x = 5π
3

cotx = − 1√
3

Figure 2.28: Blue reference triangles on left for cotx = 1√
3
, red for cotx = − 1√

3

Example 2.4.3
Solve the equation 2 cos2 θ − 1 = 0.

Solution: Isolating cos2 θ gives us

cos2 θ =
1

2
⇒ cos θ = ± 1√

2
⇒ θ =

π

4
,
3π

4
,
5π

4
,
7π

4
,

and since the period of cosine is 2π, we would add 2nπ to each of those angles to get the
general solution. But notice that the above angles differ by multiples of π

2
. Since every

multiple of 2π is also a multiple of π
2
, we can combine those four separate answers into one:

θ =
π

4
+

π

2
n for n ∈ Z

Example 2.4.4
Solve the equation 4 cos3 x− 3 cos x = 0

Solution: This equation will require some factoring. In our previous examples we were able
to isolate a squared term and then take a square root. In this case that won’t be possible.

4 cos3 x− 3 cos x = 0

cosx
(
4 cos2 x− 3

)
= 0

Now we have two things multiplied together that equal zero so one of them must be zero.
Set each factor equal to zero and find all the solutions between 0 ≤ x < 2π.
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cosx = 0 and 4 cos2 x− 3 = 0

cos2 x = 3

4

cosx = ±
√
3

2

cosx =

√
3

2
and cosx = −

√
3

2

x =
π

2
,
3π

2
and x =

π

6
,
11π

6
and x =

5π

6
,
7π

6

Note that here π

6
and 7π

6
, π

2
and 3π

2
, as well as 5π

6
and 11π

6
are different by π so we can

write our solutions as:

x =
π

2
+ nπ, x =

π

6
+ nπ, and x =

5π

6
+ nπ, where n ∈ Z

Example 2.4.5
Solve the equation 2 sin(5x) + 1 = 0

Solution: This problem is similar to Example 2.4.1 but now we have (5x) in the sine. We
need to isolate the sin(5x) and solve for the values of 5x.

2 sin(5x) + 1 = 0

2 sin(5x) = − 1

sin(5x) = − 1

2

In the interval [0, 2π) we know that 5x = 7π
6
+ 2nπ and 5x = 11π

6
+ 2nπ. We need to divide

both sides by 5 to obtain the general solution:

x =
7π

30
+

2nπ

5
, x =

11π

30
+

2nπ

5
, where n ∈ Z

Example 2.4.6
Find all solutions on [0, 2π).

2 sin2 x+ 5 sin x+ 3 = 0

Solution: Here we need to factor the equation because it is a quadratic. Also, since we only
want solutions on [0, 2π) and the angle is just x then we don’t need to write the solution
with the +2nπ.

2 sin2 x+ 5 sin x+ 3 = 0

(2 sin x+ 3) (sin x+ 1) = 0
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Now we have two things multiplied together that equal zero so one of them must be zero.
Set each factor equal to zero and find all the solutions between 0 ≤ x < 2π.

2 sin x+ 3 = 0 and sinx+ 1 = 0

sinx = −3
2

sinx = −1

No solution because −1 ≤ sinx ≤ 1 and x =
3π

2

The only solution here is x =
3π

2
.

Example 2.4.7
Find all solutions on [0, 2π).

2 sin2(2x) = 1

Solution: As in Example 2.4.5 we need to first solve for the value of 2x and then divide
by two. We don’t want the general solution but we do need to start with it to find all values
of x on [0, 2π).

We need to isolate the sin(2x) and solve for the values of 2x.

2 sin2(2x) = 1

sin2(2x) =
1

2

sin(2x) = ±
√

1

2

There are two equations to solve: sin(2x) = 1√
2

and sin(2x) = − 1√
2

so we have 4 general
solutions for 2x, one in each quadrant:

2x =
π

4
+ 2nπ =⇒ x =

π

8
+ nπ

2x =
3π

4
+ 2nπ =⇒ x =

3π

8
+ nπ

2x =
5π

4
+ 2nπ =⇒ x =

5π

8
+ nπ

2x =
7π

4
+ 2nπ =⇒ x =

7π

8
+ nπ

To find all solutions on [0, 2π) we will substitute values for n until we find all the solutions
starting with n = 0:
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n = 0: x =
π

8
+ (0)π =

π

8
n = 1: x =

π

8
+ (1)π =

9π

12

x =
3π

8
+ (0)π =

3π

8
x =

3π

8
+ (1)π =

11π

8

x =
5π

8
+ (0)π =

5π

8
x =

5π

8
+ (1)π =

13π

8

x =
7π

8
+ (0)π =

7π

8
x =

7π

8
+ (1)π =

15π

8

We don’t need to go any further because any other answers will be larger than 2π. There
are 8 possible solutions.

x =
π

8
,
3π

8
,
5π

8
,
7π

8
,
9π

8
,
11π

8
,
13π

8
,
15π

8

Example 2.4.8
There has been a murder at the Toronto docks. The coroner places the time of death around
8 AM. The main suspect claims she was on her boat fishing in Lake Ontario at the time and
that she was waiting for the tide in order to tie up her boat. Detective Murdoch knows that
the depth of water at the docks rises and falls with the tide, following the equation

f(t) = 4 sin
( π

12
t
)
+ 7,

where t is measured in hours after midnight. The suspect’s boat requires a depth of 9 feet
to tie up at the dock. Between what times will the depth be 9 feet? Is the suspect lying?

Solution: To find when the depth is 9 feet, we need to solve f(t) = 9 = 4 sin
( π

12
t
)
+ 7.

We start by isolating the sine.

4 sin
( π

12
t
)
+ 7 = 9

4 sin
( π

12
t
)

= 2

sin
( π

12
t
)

=
1

2

We know that sin θ =
1

2
when θ =

π

6
or θ =

5π

6
so the solutions to the equation sin

( π

12
t
)
=

1

2are
π

12
t =

π

6
+ 2nπ and π

12
t =

5π

6
+ 2nπ n ∈ Z

Multiply by 12

π
to find the solutions t = 2 + 24n and t = 10 + 24n. The boat will be able

to approach the dock between 2AM and 10AM. Notice that because we have +24n in each
answer the cycle will repeat every day (24 hours). The suspect is lying about waiting for the
tide at 8AM.
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Example 2.4.9
Find all solutions to sin θ = 0.8.

x

y

θ = 0.9273

θ = 2.4130

ref ∠ = 0.9273

Figure 2.29: sin θ = 0.8

Solution: To find the solutions we will draw two reference
angles. Since the sine is not one of the results for our special
triangles we will use the inverse sine function here. When you
ask your calculator for the inverse sine it will only give you one
answer:

θ = sin−1(0.8) ≈ 0.9273.

Recall that the inverse sine is answering the question: “What angle has sine 0.8?” We know
that on the interval 0 ≤ θ < 2π there are two answers. The second answer is in QII as shown
in Figure 2.29. The second answer can be found with the reference angle and the size of
the second angle is

θ ≈ π − 0.9273 ≈ 2.4130

To find all the solutions we add multiples of 2π.

θ = sin−1(0.8) + 2nπ, θ = π − sin−1(0.8) + 2nπ, where n ∈ Z

θ ≈ 0.9273 + 2nπ, θ = 2.4130 + 2nπ, where n ∈ Z

2.4 Exercises

For Exercises 1-6, find all solutions on the interval [0, 2π). Leave exact answers in radians.

1. 2 sin x =
√
2 2. 2 sin x+

√
3 = 0 3. cscx = −2

4. cos θ = 0 5. 2 cos θ + 1 = 0 6. tan(θ)−
√
3 = 0

For Exercises 7-12, find the general solution for each equation. Leave exact answers in
radians.

7. tan θ + 1 = 0 8. 2 sin x− 1 = 0 9. 2 cos x =
√
3

10.
√
3 sec x = 2 11. sin θ = 0 12.

√
3 cot(x)− 1 = 0

For Exercises 13-18, find all solutions on the interval [0, 2π). Leave exact answers in radians.
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13. 2 sin(2θ)− 1 = 0 14. tan(2x) = −1 15.
√
3 csc

(
x
2

)
= −2

16. 2 sin(2θ) + 2 = 1 17. 2 cos2(2θ) = 1 18. cos(3x) =

√
2

2

For Exercises 19-28, find all solutions on the interval [0, 2π). Leave exact answers in radians.

19. tan θ (tan θ + 1) = 0 20. cot2 x = 3

21. tanx sinx− sinx = 0 22. 2 cos2 x+ 3 cos x+ 1 = 0

23. (4 sin2 x− 3)(
√
2 cos x+ 1) = 0 24. sinx (secx+ 2) = 0

25. 2 sin2 x+ sinx− 1 = 0 26. 2 sin3 x = sin x

27. tan5 x = tan x 28. 2 cos2 x− sinx = 1

For Exercises 29-34, use a calculator to find all solutions on the interval [0, 2π). Round
answers to 4 decimal places.

29. 7 sin θ = 2 30. cosx = −0.27 31. tanx = 9.27

32. 7 sin(2θ) = 2 33. sec2 x = 7 34. tan(πx) = 9.27

35. An observer views a rocket take off from a distance of 7 km from the launch pad, and
tracks the angle of elevation. Express the height of the rocket as a function of the angle
of elevation, θ. Express the angle of elevation θ as a function of the height, h, of the
rocket. When the height of the rocket is 22 km what is the angle of elevation?

36. The height of a rider on the London Eye Ferris wheel can be determined by the equation
h(t) = −67.5 cos

( π

15
t
)
+69.5 . How long is the rider more than 100 meters above ground?
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Chapter 3

Trigonometric Identities

3.1 Fundamental Identities

Recall in Sections 1.2 and 1.4 we saw some fundamental identities. There were the reciprocal
identities, the pythagorean identities and the negative angle identities which are summarized
here.

Reciprocal Identities

csc θ =
1

sin θ
(3.1)

cot θ =
1

tan θ
(3.2)

sec θ =
1

cos θ
(3.3)

tan θ =
sin θ

cos θ
(3.4)

Pythagorean Identities

sin2 θ + cos2 θ = 1 (3.5)

1 + tan2 θ = sec2 (3.6)

1 + cot2 θ = csc2 θ (3.7)

Negative Angle Identities

sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ

83
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We also proved the pythagorean identities. This meant that we showed they the were true
for all angles θ. We can use these identities to simplify more complicated trigonometric
equations.

Simplifying Expressions

Example 3.1.1
Simplify cos2 θ tan2 θ

Solution: We can use identity (3.4) to simplify

cos2 θ tan2 θ = cos2 θ

(
sin2 θ

cos2 θ

)
= sin2 θ

Example 3.1.2
Simplify cot2 θ − csc2 θ

Solution: In this example we have squared terms with addition or subtraction so it is going
to be easiest to try to use one of the Pythagorean identities. In this case we will use identity
(3.7).

cot2 θ − csc2 θ = cot2 θ −
(
1 + cot2 θ

)
= cot2 θ − 1− cot2 θ

= −1

Example 3.1.3

Simplify sec2 x− 1

sin2 x

Solution: To simplify we will use identities (3.6), (3.4), and (3.3).

sec2 x− 1

sin2 x
=

tan2 x

sin2 x
identity (3.6)

= tan2 x

(
1

sin2 x

)
=

(
sin2 x

cos2 x

)(
1

sin2 x

)
identity (3.4)

=

(
1

cos2 x

)
= sec2 x identity (3.3)
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So sec2 x− 1

sin2 x
= sec2 x

Sometimes a problem requires factorization as well:

Example 3.1.4
Factor and simplify tan4 x+ 2 tan2 x+ 1

Solution: The trick to simplifying this problem to see that it is a quadratic equation in
tan2 x. To see this more clearly we will do a ’u- substitution’. In this case we will let
u = tan2 x then u2 = tan4 x. Then we can substitute into our original equation to get a
quadratic equation in u:

tan4 x+ 2 tan2 x+ 1 = u2 + 2u+ 1

= (u+ 1)(u+ 1)

= (u+ 1)2

But we do not want a solution in u so we have to substitute for u = tan2 x to get

tan4 x+ 2 tan2 x+ 1 =
(
tan2 x+ 1

)2
=
(
sec2 x

)2
= sec4 x

Example 3.1.5
Factor and simplify sin2 x sec2 x− sin2 x

Solution: Here we will factor the common factor sin2 x and then apply the identity (3.6).

sin2 x sec2 x− sin2 x = sin2 x
(
sec2 x− 1

)
= sin2 x tan2 x

There is no more simplification that can be done to this equation. Nothing we do here will
make the equation simpler in terms of only one trigonometric function.
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Example 3.1.6

Simplify 1

secx+ 1
− 1

secx− 1

Solution: To combine the fractions we need to find a common denominator. In this case
the common denominator is the product of the two denominators: (secx + 1)(sec x − 1).
Once we have simplified the expression we apply identity (3.6).

1

secx+ 1
− 1

secx− 1
=

(
1

secx+ 1

)(
secx− 1

secx− 1

)
−
(

1

secx− 1

)(
secx+ 1

secx+ 1

)

=
(secx− 1)− (secx+ 1)

(secx+ 1)(secx− 1)

=
secx− 1− secx− 1

(sec2 x− 1)

=
−2

tan2 x

If you would prefer to have that written without any fractions you can write:

1

secx+ 1
− 1

secx− 1
= −2 cot2 x

Proving Identities

If we want to prove an identity we want to show that it is true for all values. If we have an
equation and we want to know if it is an identity we work with one side and try to make it
look like the other.

Example 3.1.7
Use trigonometric identites to transform the left side of the equation into the right side.

cosx secx = 1

Solution: We will work with the left side. Convert everything to cos(x).

cosx secx = cos x
1

cosx
= 1

So the identity is true.

Example 3.1.8
Use trigonometric identites to transform the left side of the equation into the right side.

sin2 x− cos2 x = 2 sin2 x− 1
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Solution: For this problem we need to use one of our Pythagorean identities:

sin2 x+ cos2 x = 1 =⇒ cos2 x = 1− sin2 x

Now we take this expression for cos2(x) and substitute into the original equation:

sin2 x− cos2 x = sin2 x− (1− sin2 x)

= sin2 x− 1 + sin2 x

= 2 sin2 x− 1

So the statement is true.

3.1 Exercises

For Exercises 1 -12 simplify each expression to an expression involving a single trigonometric
function with no fractions.

1. tanx

secx sinx
2. cscx tanx 3. sec t

csc t

4. 1 + tan x

1 + cot x
5. 1 + csc t

1 + sin t
6. 1− sin2 x

1 + sin x

7. cos θ

sin2 θ
8. sin θ

cos2 θ
9. cos2 θ + sin2 θ

cos2 θ

10. 1

1− cos θ
+

1

1 + cos θ
11. sec θ

tan θ
12. tanx

cotx

For Exercises 13 - 18, use trigonometric identites to transform the left side of the equation
into the right side.

13. cot θ tan θ = 1 14. cot θ sin θ = cos θ

15. (1 + sinα)(1− sinα) = cos2 α 16. (secα + tanα)(secα− tanα) = 1

17. cos2 θ − sin2 θ = 1− 2 sin2 18. cos2 θ − sin2 θ = 2 cos2−1
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3.2 Proving Identities

In this section we will be studying techniques for verifying trigonometric identities. We need
to show that each of these equations is true for all values of our variable. There is no well
defined set of rules for how to verify an identity but we do have some guidelines we can use.

Guidelines for Verifying Trigonometric Identities

1. Only work with one side of the equation at a time. It is usually better to work
with the more complicated side first.

2. Use algebraic techniques: Factor an expression, add fractions, expand an expres-
sion, or multiply by a conjugate to create a simpler expression.

3. Look for ways to use the fundamental identities from section 3.1. Pay attention
to what is in the expression you want. Sines and cosines work well together, as
do secants and tangents, as do cosecants and cotangents.

4. Convert everything to sines and cosines and then use the fundamental identities.

5. Always try something. Even paths that don’t end up where you want may
provide insight.

NOTE: When you verify an identity you cannot assume that both sides of the equation
are equal because you are trying to verify that they are equal. This means that you cannot
use operations that do the same thing to both sides of the equation such as multiplying the
same quantity to both sides or cross multiplication.

Example 3.2.1
Verify the identity cosx+ sinx tanx = sec x.

Solution: We will work with the left side of the equation, because it is more complicated,
and make it look like the right side.

cosx+ sinx tanx = cos x+ sinx

(
sinx

cosx

)
identity (3.4)

= cos x
(cosx
cosx

)
+ sinx

(
sinx

cosx

)
common denominator

=
cos2 x

cosx
+

sin2 x

cosx

=
cos2 x+ sin2 x

cosx

=
1

cosx
identity (3.5)

= sec x
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Example 3.2.2

Verify the identity secx− 1

1− cosx
= sec x.

Solution 1: The left side is certainly more complicated so we will start there. The fraction
doesn’t have any squared terms so we can’t use the Pythagorean identities and there isn’t
any algebraic simplification that can be done. We will convert the secant to cosine and then
simplify.

secx− 1

1− cosx
=

1

cosx
− 1

1− cosx
convert to cosine

=

(
1

cosx
− 1

)
(cosx)

(1− cosx)(cosx)
multiply by 1 =

cosx

cosx

=
1− cosx

(1− cosx)(cosx)
simplify

=
1

cosx

= sec x

Solution 2: We will show a different way to verify the identity. This method is longer but it
illustrates that there is often more than one way to solve the problems. The fraction doesn’t
have any squared terms so we can’t use the Pythagorean identities, however, we can multiply
by the conjugate of the denominator to make it look like a Pythagorean identity. Remember
that (a+ b)(a− b) = a2 − b2 so here if we multiply (1− cosx)(1 + cosx) = 1− cos2 x. This
technique is known as “multiplying by the conjugate.” A conjugate is an expression where
the sign has been changed. The conjugate of a + b is a − b and vice versa. We can’t just
multiply the denominator by something because that changes the problem. What we need
to do is multiply by a clever form of 1. We will multiply by 1 =

1 + cos x

1 + cos x
.

secx− 1

1− cosx
=

(
secx− 1

1− cosx

)(
1 + cos x

1 + cos x

)
multiply by 1

=
secx+ (secx)(cosx)− cosx− 1

1− cos2 x

=
1

cosx
+
(

1
cosx

)
(cosx)− cosx− 1

1− cos2 x
reciprocal identity
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=

1

cosx
+ 1− cos2 x

cosx
− 1

1− cos2 x
Simplify and find common denominator

=

1− cos2 x

cosx
1− cos2 x

Simplify

=
1− cos2 x

(cosx)(1− cos2 x)
Simplify

=
1

cosx
Simplify

= sec x

Example 3.2.3

Verify the identity secx+ tanx

secx− tanx
= (sec x+ tanx)2

Solution: Here we will work with the left side and multiply by the conjugate of the denom-
inator. We need to multiply by 1 =

secx+ tanx

secx+ tanx
and then use identity (3.6).

secx+ tanx

secx− tanx
=

(
secx+ tanx

secx− tanx

)(
secx+ tanx

secx+ tanx

)
multiply by 1

=
(secx+ tanx)2

sec2 x− tan2 x
simplify

=
(secx+ tanx)2

1
identity (3.6)

= (sec x+ tanx)2

Example 3.2.4

Verify the identity sinx cosx

sinx− cosx
= cos x− cosx

1− tanx

Solution: Neither side of this problem looks simple but the right hand side involves two
fractions. That is more complicated than the one on the left so we will begin there.

cosx− cosx

1− tanx
= cos x− cosx

1− sinx

cosx

Convert to sine and cosine
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= cos x− (cosx)(cosx)(
1− sinx

cosx

)
(cosx)

Multiply by 1 =
cosx

cosx

= cos x− cos2 x

cosx− sinx
Simplify

=
(cosx)(cosx− sinx)

cosx− sinx
− cos2 x

cosx− sinx
Find a common denominator

=
cos2 x− cosx sinx− cos2 x

cosx− sinx
Combine the fractions

=
(− cosx sinx)(−1)

(cosx− sinx)(−1)
Simplify and multiply by −1

−1

=
sinx cosx

sinx− cosx

Example 3.2.5

Prove that tan2 θ + 2

1 + tan2 θ
= 1 + cos2 θ .

Solution: Expand the left side:

tan2 θ + 2

1 + tan2 θ
=

(tan2 θ + 1) + 1

1 + tan2 θ

=
sec2 θ + 1

sec2 θ
by identity (3.6)

=
sec2 θ

sec2 θ
+

1

sec2 θ
separate fractions.

= 1 + cos2 θ reciprocal identity

Example 3.2.6

Verify the identity 1

secx tanx
= csc x− sinx

Solution: We will begin on the left side by converting to sines and cosines
1

secx tanx
=

1

secx
· 1

tanx
write as two fractions
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= cos x
(cosx
sinx

)
Convert to sine and cosine

=
cos2 x

sinx
Simplify

=
1− sin2 x

sinx
identity (3.5)

=
1

sinx
− sin2 x

sinx
Write as separate fractions

= csc x− sinx Reciprocal identities

Example 3.2.7
Find all solutions to

cosx+ sinx tanx = 2

Solution: We need to be able to either factor this expression or write it in terms of a single
trigonometric function. We saw in Example 3.2.1 that this equation can be simplified to
cosx+ sinx tanx = sec x. Now we can solve it.

secx = 2 =⇒ cosx =
1

2
=⇒ x =

π

3
,
5π

3

The general solution is

x =
π

3
+ 2nπ, x =

5π

3
+ 2nπ, where n ∈ Z

3.2 Exercises

For Exercises 1-6 simplify each expression to an expression involving a single trigonometric
function with no fractions.

1. 1 + tan x

1 + cot x
2. 1 + csc t

1 + sin t
3. 1− sin2 x

1 + sin x

4. sec θ − cos θ

sin θ
5. tan θ

sec θ − cos θ
6. sinx

1 + cos x
+

cosx

sinx

For Exercises 7 - 28, use trigonometric identites to show the identity is true. Remember,
you may only work with one side of the equation at a time so do not cross multiply.
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7. csc θ (sin θ + cos θ) = 1 + cot θ 8. cos θ sec θ − sin2 θ = cos2 θ

9. secα− tanα =
cosα

1 + sinα 10. cos2 β − sin2 β

1− tan2 β
= cos2 β

11. 1− tan2 x

1 + tan2 x
= 2 cos2 x− 1 12. sec θ − 1

sec θ
= sin θ tan θ

13. sin θ

cos θ
+

cos θ

sin θ
= csc θ sec θ 14. sin θ

1 + sin θ
− sin θ

1− sin θ
= −2 tan2 θ

15. 2 tan x− (1 + tan x)2 = − sec2 x 16. tan2 θ − 3 sin θ tan θ sec θ = −2 tan2 θ

17. 1

cos2 x
− 1

cot2 x
= 1 18. sin θ

cos θ
+

cos θ

sin θ
= sec θ csc θ

19. tanx (cotx− cosx) = 1− sinx 20. sec θ sin θ

tan θ
− 1 = 0

21. cos2 θ

1 + sin θ
= 1− sin θ 22. cosx = 1− sin2 x

1 + cos x

23. 1 + sin x

cosx
=

cosx

1− sinx
24. tan2 x =

− sin2 x

sin2 x− 1

25. sin4 x− cos4 x = sin2 x− cos2 x 26. cscx− sinx = cot x cosx

27. tanx− cotx =
1− 2 cos2 x

sinx cosx
28. cos θ +

sin2 θ

cos θ
= sec θ

For Exercises 29 - 34, use trigonometric identites to simplify each equation, then find all
solutions on [0, 2π). Leave your answers in radians.

29. cos2 x tan2 x = 1 30. sin θ = cos θ

31. 2 cos2 x− sinx− 1 = 0 32. cos2 x = −6 sin x

33. tanx− 3 sin x = 0 34. 2 tan2 θ = 3 sec θ
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3.3 Sum and Difference Formulas

In this section we will study the use of several trigonometric identities and formulas. Some
of the formulas will be proved but most will not. The proofs of the others are very similar.
The proofs are found at the end of the section.

Sum and Difference Formulas

sin(α + β) = sinα cos β + cosα sin β (3.8)
sin(α− β) = sinα cos β − cosα sin β (3.9)
cos(α + β) = cosα cos β − sinα sin β (3.10)
cos(α− β) = cosα cos β + sinα sin β (3.11)

tan(α + β) =
tanα + tan β

1− tanα tan β
(3.12)

tan(α− β) =
tanα− tan β

1 + tanα tan β
(3.13)

These formulas are very useful but it is important to understand that these are not algebraic
properties like distributing or factoring. These are identities so you can either use the left
side or the right side but you are not really doing algebra on the problem. In particular:

sin(α + β) ̸= sinα + sin β

These formulas can be used to rewrite expressions in other forms, or to rewrite an angle in
terms of simpler angles.

Example 3.3.1
Find the exact value of cos 75◦.

Solution: Since 75◦ = 30◦ + 45◦ we can evaluate as cos 75◦ = cos (30◦ + 45◦)

cos 75◦ = cos (30◦ + 45◦)

= cos(30◦) cos(45◦)− sin(30◦) sin(45◦)

=

√
3

2
·
√
2

2
− 1

2
·
√
2

2

=

√
6−

√
2

4

We leave our answers in an exact form. If you want to verify the answer you can use your

calculator to see that cos 75◦ =

√
6−

√
2

4
. This is not the only way to solve this problem.

We could have used 75◦ = 120◦ − 45◦ and used the difference formula instead. The answer
would of course be the same.
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Example 3.3.2

Find the exact value of sin
(
7π

6
− π

3

)
using the difference formula.

x

y

α = 7π
6

−
√
3

−1
2

π
3

√
3

1

2

Figure 3.1

Solution: The difference formula is

sin(α− β) = sinα cos β − cosα sin β

where α =
7π

6
and β =

π

3
. Since α is in QIII and it has values

that we can easily find, we will draw a reference triangle (Fig-
ure 3.1) so we can evaluate the sine and cosine. Alternatively
we could have used the Unit Circle.

So sin

(
7π

6
− π

3

)
= sin

(
7π

6

)
cos
(π
3

)
− cos

(
7π

6

)
sin
(π
3

)
Using our reference triangle we can find the values we want:

sin

(
7π

6

)
= −1

2
, cos

(
7π

6

)
= −

√
3

2
, sin

(π
3

)
=

√
3

2
, and cos

(π
3

)
=

1

2

.
We substitute them into our equation to find

sin

(
7π

6
− π

3

)
=

(
−1

2

)
·
(
1

2

)
−

(√
3

2

)
·

(
−
√
3

2

)
=

1

2

Notice that this is the same answer we get from sin 5π
6

= 1
2
. The angle 5π

6
is in the QII so

the answer should be positive, and it is.

Example 3.3.3

Find the exact value of cos
( π

16

)
cos

(
3π

16

)
− sin

( π

16

)
sin

(
3π

16

)
.

Solution: Neither angle here is one of the nice angles that we can evaluate exactly with a
reference triangle so we need to try something else. This formula is the sum of cosines so we
can apply formula (3.10)

cos
( π

16

)
cos

(
3π

16

)
− sin

( π

16

)
sin

(
3π

16

)
= cos

(
π

16
+

3π

16

)
= cos

π

4
=

√
2

2

Example 3.3.4
Verify the cofunction identity sin

(
x+ π

2

)
= cos x

Solution: We saw that this was true in Section 1.4 by looking at values on the unit circle.
We can now show that it is true using the addition formula for sine.

sin
(
x+

π

2

)
= sin x cos

(π
2

)
+ cosx sin

(π
2

)
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cos
(π
2

)
= 0 and sin

(π
2

)
= 1 so

sin
(
x+

π

2

)
= cos x

Example 3.3.5
Given angles A and B such that sinA = 4

5
and sinB = 12

13
with 0 ≤ A, B ≤ π

2
find the exact

values of sin(A+B), cos(A+B), and tan(A+B).

Solution: We need to find the values of the other trigonometric functions so we will draw
triangles for A and B. The missing sides are found using the Pythagorean theorem. See
Figure 3.2.

A
3

4

5

(a) Angle A

B

12

5
13

(b) Angle B

Figure 3.2: Example 3.3.5

Using the addition formula for sine, we get:

sin (A+B) = sinA cosB + cosA sinB

=
4

5
· 5

13
+

3

5
· 12

13
⇒ sin(A+B) =

56

65

Using the addition formula for cosine, we get:

cos(A+B) = cosA cosB − sinA sinB

=
3

5
· 5

13
− 4

5
· 12

13
⇒ cos(A+B) = − 33

65

Instead of using the addition formula for tangent, we can use the results above:

tan(A+B) =
sin(A+B)

cos(A+B)
=

56
65

−33
65

⇒ tan(A+B) = − 56

33
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Example 3.3.6
Suppose sinu = 5

13
with u in quadrant II and tan v = −x

3
with v in quadrant III. Find an

algebraic expression for cos(u+ v).

x

y

u

−12

5
13

v

−x

3

√
9
+
x 2

Figure 3.3

Solution: The cosine sum formula is

cos(u+ v) = cosu cos v − sinu sin v

where u and v are the angles drawn in Figure 3.3. We can evaluate
the sine and cosine using these reference triangles.

cos(u+ v) = cosu cos v − sinu sin v

=

(
−12

13

)(
3√

9 + x2

)
−
(

5

13

)(
−x√
9 + x2

)
=

5x− 36

13
√
9 + x2

Example 3.3.7
Write

sin
(
tan−1 1 + cos−1 x

)
as an algebraic expression.

Solution: This expression is in the form sin(α + β) so we let α = tan−1 1 and β = cos−1 x.
Those triangles are shown in Figure 3.4. We will use the formula and read the values of
the sines and cosines off the triangles.

α

√
2

1

1

β

x

√
1− x2

1

α = tan−1(1) β = cos−1(x)

Figure 3.4

sin
(
tan−1 1 + cos−1 x

)
= sin(tan−1 1) cos(cos−1 x) + cos(tan−1 1) sin(cos−1 x)

= sinα cos β + cosα sin β

=

(
1√
2

)(x
1

)
+

(
1√
2

)(√
1− x2

1

)
=

x+
√
1− x2

√
2
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You can check to see if this is a reasonable answer by trying some values for x using your
calculator.

We will prove the difference of angles identity for cosine

cos(α− β) = cosα cos β + sinα sin β.

The formula for cos(α + β) is derived by replacing −β with −(−β) in the formula and
applying the negative angle identities sin(x) = − sin(−x) and cos(x) = cos(−x).

O

D

Q

C

P

β

α -βα

Figure 3.5: A unit circle

Consider two points on the unit circle in Figure 3.5:

Point P at an angle α from the positive x-axis with
coordinates (cosα, sinα).

Point Q at an angle β from the positive x-axis with
coordinates (cos β, sin β).

The triangle △OPQ has angle ∠POQ of size α − β.
Triangle △OCD is △OPQ rotated β degrees clock-
wise so the length of the two red segments PQ and
CD are the same lengths. We also know the coordi-
nates of points C and D:

Point C is at an angle α− β from the positive x-axis
with coordinates (cos(α− β), sin(α− β)) and point
D is at (1, 0)

We can calculate the lengths of PQ and CD using the
formula for the distance between two points (x1, y1)
and (x2, y2):

distance =

√
(x1 − x2)

2 + (y1 − y2)
2

We can expand and simplify using the Pythagorean identity.

length PQ =

√
(cosα− cos β)2 + (sinα− sin β)2

=

√
cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin2 β + sin2 β

=
√
2− 2 cosα cos β − 2 sinα sin β

=
√

2(1− cosα cos β − sinα sin β)
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Similarly we calculate the length of CD

length CD =

√
(cos(α− β)− 1)2 + (sin(α− β))2

=
√

cos2(α− β)− 2 cos(α− β) + 1 + sin2(α− β)

=
√
2− 2 cos(α− β)

=
√

2(1− cos(α− β))

If we set the two lengths equal we see that

2(1− cosα cos β − sinα sin β) = 2(1− cos(α− β))

and with a bit of algebra

cos(α− β) = cosα cos β + sinα sin β

which is what we were trying to show. A similar calculation can produce sin(α− β).

Formulas for tan(α+ β) and tan(α− β) are found by applying the identity tanx = sinx
cosx

and
the addition formulas for sine and cosine.

Example 3.3.8

Show that tan(α + β) =
tanα + tan β

1− tanα tan β

Solution:

tan(α + β) =
sin(α + β)

cos(α + β)

=
sinα cos β + cosα sin β

cosα cos β − sinα sin β
formulas (3.8) and (3.10)

=

sinα cos β

cosα cos β
+

cosα sin β

cosα cos β
cosα cos β

cosα cos β
− sinα sin β

cosα cos β

divide everything by cosα cos β

=

sinα

cosα
+

sin β

cos β

1− sinα

cosα
· sin β
cos β

cancel common terms

=
tanα + tan β

1− tanα tan β
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3.3 Exercises

For Exercises 1-8 use the sum and difference formulas to find the exact values.

1. sin (45◦ − 30◦) 2. cos (45◦ + 30◦) 3. tan (135◦ − 30◦) 4. sin (135◦ + 150◦)

5. sin
(π
4
+

π

3

)
6. cos

(
π

3
− 3π

4

)
7. tan

(π
6
+

π

3

)
8. cos

(
7π

4
+

π

3

)

For Exercises 9-16 use the sum and difference formulas to find the exact values.

9. sin 75◦ 10. cos 255◦ 11. tan(−165◦) 12. sin 345◦

13. sin
( π

12

)
14. cos

(
5π

12

)
15. tan

(
23π

12

)
16. cos

(
− π

12

)

For Exercises 17 - 22, find the exact value of the expression.

17. sin
( π

16

)
cos

(
7π

16

)
+ cos

( π

16

)
sin

(
7π

16

)
18. sin

(
3π

16

)
cos

(
7π

16

)
− cos

(
3π

16

)
sin

(
7π

16

)
19. cos

( π

16

)
cos

(
7π

16

)
− sin

( π

16

)
sin

(
7π

16

)
20. sin

(
3π

16

)
sin

(
7π

16

)
+ cos

(
3π

16

)
cos

(
7π

16

)

21.
tan
( π

16

)
+ tan

(
7π

16

)
1− tan

( π

16

)
tan

(
7π

16

) 22.
tan

(
13π

12

)
− tan

( π

12

)
1− tan

(
13π

12

)
tan
( π

12

)
For Exercises 23 - 30, use the sum and difference formulas to rewrite each expression in terms
of one trigonometric function.

23. cos
(
x+ π

2

)
24. sin

(
x− π

2

)
25. cos (x+ π) 26. tan (x− π)

27. csc
(
π
2
− x
)

28. sec
(
π
2
− t
)

29. cot
(
π
2
− x
)

30. tan
(
π
2
− θ
)

For Exercises 31 - 34, given angles A and B such that 0 ≤ A, B ≤ π
2

find the exact values
of sin(A+B), cos(A+B), and tan(A+B).

31. sinA =
3

5
and sinB =

15

17
32. sinA =

24

25
and cosB =

5

13
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33. cosA =
3

5
and tanB =

12

5
34. sinA =

5

12
and sinB =

3

4

For Exercises 35 - 38, given angles A and B find the exact values of sin(A+B), cos(A+B),
and tan(A+B).

35. sinA =
5

13
with A in quadrant II and cosB = −2

3
with B in quadrant III.

36. sinA = − 5

13
with A in quadrant IV and sinB =

2

3
with B in quadrant I.

37. tanA =
5

13
with A in quadrant III and cosB = − 5

13
with B in quadrant III.

38. sinA =
40

41
with A in quadrant II and cosB =

x

41
with B in quadrant IV.

39. Write cos
(
tan−1 1 + sin−1 x

)
as an algebraic expression.

40. Write sin
(
sin−1

(√
3
2

)
+ tan−1

(
x
2

))
as an algebraic expression.

41. Prove the identity cos(A+B) + cos(A−B) = 2 cosA cosB

42. Prove the identity cos(A+B) cos(A−B) = cos2A− cos2B



102 Trigonometric Identities

3.4 Multiple-Angle Formulas

Double Angle Formulas

Example 3.4.1
Find an expression for sin(2θ).

Solution: We can find an expression for sin(2θ) by rewriting it as sin(θ + θ) and using the
addition formula.

sin(θ + θ) = sin θ cos θ + sin θ cos θ = 2 sin θ cos θ

We can similarly find formulas for cos 2θ and tan 2θ. The double angle formulas are summa-
rized in the table below.

Double Angle Formulas

sin(2θ) = 2 sin θ cos θ (3.14)

cos(2θ) = cos2 θ − sin2 θ (3.15)

= 2 cos2 θ − 1 (3.16)

= 1− 2 sin2 θ (3.17)

tan(2θ) =
2 tan θ

1− tan2 θ
(3.18)

Notice that there are three formulas for cos(2θ). The first comes from applying the sum of
angles for cosine formula (3.10). The other two are derived by the Pythagorean identity.

Example 3.4.2
Show that cos2 θ − sin2 θ = 2 cos2 θ − 1

Solution: Working with the left side and sin2 θ = 1− cos2 θ we get.

cos2 θ − sin2 θ = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1

And so the identity is shown.
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Example 3.4.3
Use a double angle formula to rewrite the equation

y = 4 cos2 x− 2.

Then sketch the graph of the equation over the interval [0, 2π].

Solution: We will factor a 2 and then use the double angle formula (3.16).

y = 4 cos2 x− 2

= 2
(
cos2 x− 1

)
= 2 cos(2x)

This equation can be graphed in Figure 3.6 using the techniques we saw in Section 2.1.

x

y

0

2

1

−1

−2

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y = 2 cos(2x)

Figure 3.6

Example 3.4.4
Suppose cos θ = −2

3
with π ≤ θ ≤ 3π

2
. Find the value of sin 2θ, cos 2θ and tan 2θ.

x

y

θ
−2

−
√
5

3

Figure 3.7

Solution: Since θ is in QIII and we know that
cos θ = −2

3
= adjacent

hypotenuse , we can find the missing side by the
Pythagorean theorem and draw a reference triangle (Figure
3.7). From our reference triangle we can evaluate the sine,
cosine and tangent. Now we can calculate

sin 2θ = 2 sin θ cos θ = 2

(
−
√
5

3

)(
−2

3

)
=

4
√
5

9

cos 2θ = cos2 θ − sin2 θ =

(
−2

3

)2

−

(
−
√
5

3

)2

= −1

9
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tan 2θ =
2 tan θ

1− tan2 θ
=

2

(√
5

2

)

1−

(√
5

2

)2 =

√
5

1− 5
4

= −4
√
5

We could have calculated the tangent with the identity tan 2θ =
sin 2θ

cos 2θ
=

4
√
5

9

−1
9

= −4
√
5 .

Notice that this is the same answer we get from our original calculation.

Example 3.4.5
Express sin 3x in terms of sinx.

Solution: We will have to use the sum formula on 3x = 2x + x and the double angle
formulas. For the cosine we will use cos 2x = 1− sin2 x because we want our answer entirely
in terms of sinx.

sin 3x = sin(2x+ x)

= sin 2x cosx+ cos 2x sinx

= (2 sin x cosx) cos x+ (1− 2 sin2 x) sin x

= 2 sin x cos2 x+ sinx− 2 sin3 x

= 2 sin x(1− sin2 x) + sin x− 2 sin3 x

= 2 sin x− 2 sin3 x+ sinx− 2 sin3 x

= 3 sin x− 4 sin3 x

Example 3.4.6
Solve cos(2x) = cos x for all solutions on [0, 2π).

Solution: In general when solving a trigonometric equation it is more complicated if you
have functions with different periods or different trigonometric functions. In this case we
have (2x) in one of the cosines and x in the other so they have different periods. We would
like to have this equation in all in terms of cosx so we will use the double angle formula
cos(2x) = 2 cos2 x− 1.

cos(2x) = cosx original equation
2 cos2 x− 1 = cosx double angle formula

2 cos2 x− cosx− 1 = 0 set quadratic equal to zero
(2 cos x+ 1)(cosx− 1) = 0 factor

Now set each of the factors equal to zero and solve separately.
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2 cos x+ 1 = 0 or cosx− 1 = 0

cosx = −1

2
cosx = 1

x =
2π

3
or x =

4π

3
x = 0

The solutions are
x =

2π

3
, x =

4π

3
, and x = 0

Power Reducing Formulas

Closely related to the double angle formulas are the power-reducing formulas. These are
derived directly from the double angle formulas.

Example 3.4.7

Verify the identity sin2 θ =
1− cos (2θ)

2
.

Solution: We will start with the double angle formula

cos (2θ) = 1− 2 sin2 θ

and solve for sin2 θ.
2 sin2 θ = 1− cos (2θ)

sin2 θ =
1− cos (2θ)

2

We call this a power reducing formula because we take sin2 θ and convert it to cosine to the
first power. This formula is useful when you can’t work with the square of the trigonometric
function but you can work with the first power. In particular these power reducing formulas
are used often in calculus. Example 3.4.8 shows a typical power reduction used in calcu-
lus. We can similarly derive power reducing formulas for the cosine and tangent which are
summarized in the following table.

Power-Reducing Formulas

sin2 θ =
1− cos (2θ)

2
cos2 θ =

1 + cos (2θ)

2
tan2 θ =

1− cos (2θ)

1 + cos (2θ)
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Example 3.4.8
Rewrite cos4 θ as a sum of first power of the cosines of multiple angles.

Solution:

cos4 θ =
(
cos2 θ

)2 exponent law

=

(
1 + cos (2θ)

2

)2

power-reducing formula

=
1

4

(
1 + 2 cos (2θ) + cos2 (2θ)

)
algebra

=
1

4

(
1 + 2 cos (2θ) +

1 + cos (4θ)

2

)
power-reducing formula on cos2 (2θ)

=
1

8
(3 + 4 cos (2θ) + cos (4θ)) factor 1

2
and simplify

Note: In calculus it can be difficult to integrate sine and cosine powers greater than 1 but it
is comparatively trivial to integrate the power-reduced equivalent.

Half-Angle Formulas

From the power reducing formulas we can derive half-angle formulas .

Example 3.4.9

Prove that sin

(
θ

2

)
= ±

√
1− cos θ

2
.

Solution: Start with the formula sin2 θ =
1− cos (2θ)

2
and replace θ with θ

2
.

sin2

(
θ

2

)
=

1− cos θ

2

Taking the square root provides the answer.

sin

(
θ

2

)
= ±

√
1− cos θ

2

Note that we have a ± in front of the square root. The choice of sign depends on the
quadrant of θ/2.
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The half-angle formulas are summarized here.

Half-Angle Formulas

sin

(
θ

2

)
= ±

√
1− cos θ

2
cos

(
θ

2

)
= ±

√
1 + cos θ

2

tan

(
θ

2

)
=

1− cos θ

sin θ
=

sin θ

1 + cos θ

The sign of sin
(
θ
2

)
and cos

(
θ
2

)
depends on the quadrant of θ

2
.

Example 3.4.10
Use a half angle formula to find sin 165◦.

Solution Our answer will be positive because 165◦ is in the second quadrant and sine is
positive in QII. Also notice that 165◦ =

330◦

2
so we can use the half-angle formula for sine.

sin 165◦ = sin

(
330◦

2

)
= +

√
1− cos 330◦

2
=

√
1−

√
3
2

2

sin 165◦ =

√
2−

√
3

4

3.4 Exercises

1. If sinx =
1

8
and x is in quadrant II, find exact values for (without solving for x):

(a) sin(2x) (b) cos(2x) (c) tan(2x) (d) sin(3x)

2. If cos θ =
2

5
and 3π

2
≤ θ ≤ 2π, find exact values for (without solving for x):

(a) sin(2θ) (b) cos(2θ) (c) tan(2θ) (d) sin(3θ)

For Exercises 3-10 simplify each expression using the double angle formulas.
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3. cos2 x− sin2 x 4. 2 cos2
(
x
2

)
− 2 sin2

(
x
2

)
5. 6 cos2(3x)− 3 6. 2 sin2(2x)− 1

7. sin2(5x)− cos2(5x) 8. 4 sin x cosx

9. sinx cosx 10. 1− 2 sin2(17◦)

For Exercises 11-15 solve for all solution on [0, 2π). Leave exact answers.

11. 6 sin(2θ) + 9 sin θ = 0

12. 2 sin(2θ) + 3 cos θ = 0

13. sin(2θ) = cos θ

14. cos(2θ) = sin θ

15. sin(4θ) = sin(2θ)

For Exercises 16 - 21, use the power reducing formulas to rewrite the extpressions without
exponents.

16. cos2(2x) 17. sin4 x 18. sin4(3x)

19. sin2
(x
2

)
cos2

(x
2

)
20. cos2 x sin4 x 21. cos4 x sin2 x

For Exercises 22 - 30, use the half angle formula to find the exact value of each expression.

22. sin(75◦) 23. cos(75◦) 24. tan(75◦)

25. sin
(π
8

)
26. cos

(π
8

)
27. tan

(π
8

)
28. sin

(
7π

12

)
29. cos

(
7π

12

)
30. tan(105◦)

For Exercises 31 - 33, given angles A find the exact values of (a) sin

(
A

2

)
, (b) cos

(
A

2

)
,

and (c) tan

(
A

2

)
.

31. cotA = 7 with A in quadrant III.

32. sinA = − 5

13
with A in quadrant IV.

33. secA = 4 with 3π
2
≤ A ≤ 2π .



Chapter 4

General Triangles

4.1 Law of Sines

Introduction

A C

B

b

h a
c

Figure 4.1: Oblique triangle

Up to now all the triangles we have looked at have
been right triangles (one angle of 90◦). If we knew
two other pieces of information about the triangle,
lengths of sides or angle measure, we could solve the
triangle. Recall that to solve a triangle we wanted to
find the lengths of all the sides and the measure of all
the angles. Suppose we have a triangle with no right
angles such as △ABC in Figure 4.1. A triangle with
no right angles is called an oblique triangle. For our
oblique triangle we label the angles with upper case

letters A, B, and C and the sides opposite those angles with the corresponding lower case
letter. Suppose we want to find a relationship between the sinA and the sides of triangle.
We can’t use our usual relationship of opposite over hypotenuse because that applies to right
triangles. We will draw the height of the triangle h, (in this case from B), and divide the
triangle into two right triangles. With the right triangles we can use our usual relationships:

sinA =
h

c
sinC =

h

a

Solving each of the equations for h gives us

h = c sinA h = a sinC

Setting them equal

h = h

c sinA = a sinC

109
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sinA

a
=

sinC

c

We can similarly find a relationship for sinB.

sinA

a
=

sinB

b

This is known as the Law of Sines and is summarized in the table below.

Law of Sinesθ

If a triangle has sides of lengths a, b, and c opposite the angles A, B, and C, respec-
tively, then

sinA

a
=

sinB

b
=

sinC

c
.

The reciprocal is also true
a

sinA
=

b

sinB
=

c

sinC
.

Note: The law of sines was proved for an acute triangle where all the angles were less than
90◦ but the law holds for all triangles.

There are 2 cases where we can use the law of sines. In each of these cases we need three
pieces of information.
Case 1: One side and two angles (AAS or ASA)
Case 2: Two sides and an angle opposite one of them (Side Side Angle SSA)

Example 4.1.1
Case 1: One side and two angles (AAS)

Solve the triangle in Figure 4.2 where B = 105◦, C = 40◦, and b = 20 meters.

A C

40◦

B

105◦

b = 20 m

a
c

Figure 4.2

Solution: Recall that to solve the triangle we need to find the
remaining sides and angles. We begin with the missing angle
because the sum of the angles of a triangle is always 180◦.

A = 180−B − C

= 180− 105◦ − 40◦

= 35◦

So A = 35◦ and by the law of sines we can find the missing
sides:

a

sinA
=

b

sinB
=

c

sinC

a

sin 35◦
=

20

sin 105◦
=

c

sin 40
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So we have the following two equations:

a

sin 35◦
=

20

sin 105◦
and 20

sin 105◦
=

c

sin 40

and we can solve for a and c

a =

(
20

sin 105◦

)
(sin 35◦) and c =

(
20

sin 105◦

)
(sin 40)

a ≈ 11.88 m and c ≈ 13.11 m

The Ambiguous Case (SSA)

In Example 4.1.1 we knew two of the angles and one side. This amount of information
determines one unique triangle. In the case where you know two sides and an angle opposite
one of them there are 3 possible outcomes which are shown in Figure 4.3: no solutions, one
solution or two solutions. This is called the ambiguous case.

A is acute.

a < h

None

h

A

B

ac

A is acute.

a = h

One

A

B

a
c

A is acute.

a ≥ c

One

h

A

B

ac

A is acute.

h < a < c

Two

h

A

B

a a
c

A is obtuse.

a ≤ c

None

A

B

a
c

A is obtuse.

a > c

One

A

B

a
c

Figure 4.3: The Ambiguous Cases (SSA): Conditions and Possible Triangles

Example 4.1.2
Case 2: Two sides and one angle, two solutions (SSA)

Solve the triangle where A = 60◦, a = 9, and c = 10.

h

A

B

9 910

C′ C

Figure 4.4

Solution: When you have an angle and two sides you want to draw
what you know and then calculate the height. The height will let you
know if you can make a triangle or not. The side opposite the angle
you know has to be at least as long as the height or you can’t make
a triangle.

sin 60◦ =
h

10
=⇒ h = 8.66

In Figure 4.4 the red sides are the two possibilities because

(h = 8.66) < (a = 9) < (c = 10)
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We start by solving the triangle where C is an acute angle. Using the law of sines,
sinA

a
=

sinC

c
, we can solve for C

sin 60

9
=

sinC

10
=⇒ C = sin−1

(
10 sin 60

9

)
= 74.21◦

and B = 180◦ − 60◦ − 74.21◦ = 45.79. Then the final side can be found with the law of sines
again.

9

sin 60◦
=

b

sin(45.79◦)
=⇒ b =

9 sin(45.79◦)

sin 60◦
= 7.45

The solution to the first triangle is C = 74.21◦, B = 45.79◦ and b = 7.45 .

The second triangle has C ′ > 90◦ and is the supplementary to C. (Why?)

C ′ = 180◦ − 74.21◦ = 105.79

and B′ = 180◦ − 60◦ − 105.79◦ = 14.21◦. The final side can once again be calculated using
the law of sines.

9

sin 60◦
=

b′

sin(14.21◦)
=⇒ b′ =

9 sin(14.21◦)

sin 60◦
= 2.55

The solution to the second triangle is C = 105.79◦, B = 14.21◦ and b = 2.55 .

Example 4.1.3
Case 3: Two sides and one angle, No solution (SSA)

Solve the triangle where A = 30◦, a = 6, and b = 12.8.

h

A

C

612.8

30◦

Figure 4.5

Solution: In this case we have no solution because the sides can’t
meet. Drawing a diagram of the information you know will help
to see this as in Figure 4.5. Consider the height h of the this
possible triangle.

sin 30 =
h

12.8
=⇒ h = 6.4

Since the height is 6.4 but the side opposite A has length 6, there
is no way to construct this triangle and hence there is no solution.

Example 4.1.4
Two radar stations located 10 km apart both detect a UFO located between them. The angle
of elevation measured by the first station (A) is 36◦ and the angle of elevation measured by
the second station (C) is 20◦. What is the altitude (h) of the UFO? See Figure 4.6

Solution: The triangle formed by the radar stations and the UFO is not a right triangle. If
we call the angle at the UFO B then we can see that B = 180◦ − 36◦ − 20◦ = 124◦. To find
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IA I C

hc
a

10, 000 m

36◦ 20◦

B

Figure 4.6: UFO and radar stations

the altitude we would need to know one side of a right triangle. Since the height h makes
two right triangles we can use either side a or c to solve the problem. We will use side a but
you can verify that you arrive at the same answer if you use side c.

Since we do not have a right triangle and this situation is AAS we will use the law of sines
and we know we have only one possible solution.

10, 000

sin 124◦
=

a

sin 36◦
=⇒ a =

10, 000 sin 36◦

sin 124◦
= 7090m

Now we can use the standard relationship for the sine to calculate the height.

sin 20◦ =
h

a

sin 20◦ =
h

7089

h = 2425 m

Example 4.1.5
A person standing 400 ft from the base of a mountain measures the angle of elevation from
the ground to the top of the mountain to be 25◦. She then walks 500 ft straight back and
measures the angle of elevation to now be 20◦. How tall is the mountain?

h

500 400 x

20◦ 25◦

Solution: This is the same problem (Example 1.5.6)
that we had when were were looking at applications of
trigonometric functions in Section 1.5. In that problem
we used the tangent function and a bit of algebra to do
the calculation. This time we will use the law of sines.

Once again we assume that the ground is flat and not
inclined relative to the base of the mountain and we let h
be the height of the mountain as in the picture on the right. To use the law of sines we will
use the following simplified triangle.
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h

c = 500

20◦ 25◦B

C

b

We know that angle B is supplementary to 25◦ so B =
180◦ − 25◦ = 155◦. The angles in a triangle add up to
180◦ so C = 5◦. Now we have enough information to use
the law of sines to calculate the distance from the second
observation point to the top of the mountain, length b in
the diagram.

b

sin 155◦
=

500

sin 5◦

b =
500 sin 155◦

sin 5◦

b ≈ 2424ft
Now we can use the right triangle with the height h as the opposite side to the 20◦ and
b = 2424 ft as the hypotenuse.

h = 2424 sin 20◦ = 829ft

This is the same height we had calculated earlier but the calculations were simpler.

4.1 Exercises

For Exercises 1-6 use the law of sines to solve the triangle △ABC.

1. A C

B

50◦

70◦

20

ac

2. A C

B

45◦

75◦

b

15c

3. A C

B

65◦
5

6

c

4. A C

B

70◦

b

10090
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5. A C

B

120◦

25◦

b

6
c

6. A C

B

40◦ 110◦

b

a
18

For Exercises 7-16 use the law of sines to solve the triangle △ABC. If there is more than
one possible solution, give both. If there is no answer state that there is no possible triangle.

7. a = 10, A = 35◦, B = 25◦ 8. b = 40, B = 75◦, c = 35

9. A = 40◦, B = 45◦, c = 15 10. a = 5, A = 42◦, b = 7

11. a = 40, A = 25◦, c = 30 12. a = 5, A = 47◦, b = 9

13. a = 12, A = 94◦, b = 5 14. a = 12, A = 94◦, b = 15

15. a = 12.3, A = 41◦, b = 15.6 16. a = 22, A = 50◦, c = 27

For Exercises 17-19 solve for the unknown quantity in Figure: 4.7. (Not to scale)

IA I C

hc
a

b

α γ

B

β

Figure 4.7: UFO and radar stations

17. Two radar stations located b = 17 km apart both detect a UFO located between them.
The angle of elevation measured by the first station (A) is α = 72◦ and the angle of
elevation measured by the second station (C) is γ = 51◦. What is the altitude (h) of the
UFO?

18. Two radar stations located b = 17 km apart both detect a UFO located between them.
The angle of elevation measured by the first station (A) is α = 19◦ and the angle of
elevation measured by the second station (C) is γ = 151◦. What is the altitude (h) of
the UFO? (Note: The UFO is to the right of station C.)

19. Two radar stations located b = 107 km apart both detect a UFO located between them.
The angle of elevation measured by the first station (A) is α = 52◦ and the angle of
elevation measured by the second station (C) is γ = 32◦. What is the altitude (h) of the
UFO?
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h

a b

α β

Figure 4.8: Mountain height

For Exercises 20-23 solve for the height of the mountain in Figure: 4.8. (Not to scale)

20. α = 31◦, β = 87◦, a = 10 km, b = 1 km

21. α = 68◦, β = 71◦, a = 1000 m, b = 250 m

22. α = 37◦, β = 50◦, a = 2.5 km, b = 2 km

23. α = 50◦, β = 57◦, a = 5.0 km, b = 50 km



4.2 Law of Cosines 117

4.2 Law of Cosines

Introduction

In Section 4.1 we were able to solve triangles with no right angles using the law of sines.

sinA

a
=

sinB

b
=

sinC

c
.

The law of sines works in two cases:
Case 1: One side and two angles (AAS or ASA)
Case 2: Two sides and an angle opposite one of them (SSA)

There are two cases for which the law of sines does not work because we only have one
piece of information in each of our ratios. To use the law of sines you have to have all the
information to evaluate one of the fractions, an angle and its opposite side, and that is not
true for these last two cases.
Case 3: Three sides (SSS)
Case 4: Two sides and the included angle (SAS)

A C

B

b

b− x x

h a
c

Figure 4.9: Law of Cosines diagram

To find another equation to solve the last two cases we
will once again construct an oblique triangle and label
the angles with upper case letters A, B, and C and
the sides opposite those angles with the corresponding
lower case letter. We draw the height of the triangle
h, (in this case from B), and divide the triangle into
two right triangles. Now side b is divided into two
pieces, one with length x and the other with length
b − x. Using the Pythagorean theorem we can write
an equation for h for both triangles.

For the triangle on the right
h2 = a2 − x2 (4.1)

For the triangle on the left

h2 = c2 − (b− x)2

h2 = c2 −
(
b2 − 2bx+ x2

)
h2 = c2 − b2 + 2bx− x2 (4.2)

Both of these equations involve x but we would like to use only the sides and angles originally
given so using the cosine we see that x = a cosC. Now set equation (4.1) equal to equation
(4.2) and simplify.

h2 = h2
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a2 − x2 = c2 − b2 + 2bx− x2

c2 = a2 + b2 − 2bx

Replace x = a cos C
c2 = a2 + b2 − 2ab cos C. (4.3)

This is known as the Law of Cosines And it relates the three sides of the triangle and one
of the angles. This equation can be written in terms of any of the angles. The results are
summarized here.

Law of Cosines

If a triangle has sides of lengths a, b, and c opposite the angles A, B, and C,
respectively, then

Standard Form Alternative Form

a2 = b2 + c2 − 2bc cos A cos A =
b2 + c2 − a2

2bc

b2 = a2 + c2 − 2ac cos B cos B =
a2 + c2 − b2

2ac

c2 = a2 + b2 − 2ab cos C cos C =
a2 + b2 − c2

2ab

Note: The law of cosines was proved for an acute triangle where all the angles were less than
90◦ but the law holds for all triangles.

Example 4.2.1
Case 3: Three sides (SSS)

Solve the triangle in Figure 4.10 where a = 3, b = 9, and c = 8.

A C

B

9

3
8

Figure 4.10

Solution: Recall that to solve the triangle we need to find all
sides and angles. We have three sides so we can’t use the law of
sines but we can use the law of cosines. We will use the alternate
form so we can find one of the angles. We will start with the
largest angle, which is opposite the longest side, ∠B.

cos B =
a2 + c2 − b2

2ac

=
82 + 32 − 92

2 · 3 · 8
= −1

6



4.2 Law of Cosines 119

So B = 99.59◦ . Generally if you can use the law of sines it is easier than the law of cosines.
Now that we have one of our angles we can use the law of sines to find another angle, say
∠A.

sinA

a
=

sinB

b

sinA

3
=

sin 99.59◦

9

A = sin−1

(
3(sin 99.59◦)

9

)
Then A = 19.19◦ and C = 180◦ − A−B = 180− 19.19◦ − 99.59◦ =⇒ C = 61.22 .

Example 4.2.2
Case 4: Two sides and the included angle (SAS)

Solve the triangle where A = 55◦, b = 3, and c = 10.

B A

C

10

3
a

55◦

Figure 4.11

Solution: Figure 4.11 is a sketch of the given in-
formation. Once again we can’t use the law of sines
because we don’t know an angle and the length of
its opposite side. We will start by calculating the
length of a with the law of cosines and then use the
law of sines to find another angle. While we could
use the law of cosines to do solve for the angle, it is
easier to use the law of sines whenever you have the
choice.

a2 = b2 + c2 − 2bc cos A

= 33 + 102 − 3 · 3 · 10 cos(55◦)
= 74.5854

so a = 8.64. Using the law of sines, sinA

a
=

sinC

c
, we can solve for C. (NOTE: Always

solve for the largest angle first.)

sin 55◦

8.64
=

sinC

10
=⇒ C = sin−1

(
10 sin 55◦

8.64

)
= 108.48◦

and B = 180◦ − 55◦ − 108.48◦ = 16.52◦.

The solution to the first triangle is C = 108.48◦, B = 16.52◦ and a = 8.64 .
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Example 4.2.3
Two radar stations located 10 km apart both detect a UFO located between them. Station
Alpha calculates the distance to the object to be 7500 m and Station Beta calculates the
distance as 9200 m. Find the angle of elevation measured by both stations (α) and (β). See
Figure 4.12

IAlpha I Beta

b = 7500 m a = 9200 m

c = 10, 000 m

α β

C

Figure 4.12: UFO and radar stations

Solution: The triangle formed by the radar stations and the UFO is not a right triangle
and we know three sides (SSS). This means we need to use the law of cosines to calculate
one of the angles. As before we will use the law of sines to calculate the second angle. Since
we are looking for the angle we need the alternate form of the law of cosines:

cos β =
a2 + c2 − b2

2ac

=
92002 + 100002 − 75002

2(9200)(10000)

= 0.697772

So β = cos−1(0.697772) = 45.75◦ and we can use the law of sines to find α.

sinα

a
=

sin β

b
sinα

9200
=

sin 45.75◦

7500

sinα =
9200 sin 45.75◦

7500
α = 61.48◦

Then α = 61.48◦ and β = 45.75◦
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Example 4.2.4
A baseball diamond is a square with 90 foot sides, with a pitcher’s mound 60.5 feet from home
plate. How far is it from the pitcher’s mound to third base? A diagram of the dimensions
of a baseball diamond is in Figure 4.13.

Pitcher’s mound

home plate

second base

first
base

third
base

45◦

60.5 ft

90 ft90 ft

a

Figure 4.13: Dimensions on a baseball diamond

Solution: It is tempting to assume the pitcher’s mound is in the center of the baseball
diamond but it is not. It is located about 3 feet closer to home plate than the center. The
distance to third base will therefore be different than the distance to home plate. We do have
two sides of a triangle and the angle between them. The triangle is drawn on the diagram
and the angle is 45◦ (why?). Using the law of cosines we can find the missing length.

a2 = b2 + c2 − 2bc cos A

a2 = 902 + 60.52 − 2(90)(60.5) cos 45◦

a2 = 4060

a = 63.72 ft

4.2 Exercises

For Exercises 1-6 use the law of cosines to solve the triangle △ABC.
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1. A C

B

50◦

20

15c

2. A C

B

33.6◦

b

97

3. A C

B

9

8

7

4. A C

B

100

7090

5. A C

B

120◦

3

6
c

6. A C

B

110◦

4

a
18

For Exercises 7-12 use the law of cosines to solve the triangle △ABC. If there is more than
one possible solution, give both. If there is no answer state that there is no possible triangle.

7. a = 10, b = 35, c = 30 8. b = 40, A = 75◦, c = 35

9. a = 40, B = 25◦, c = 30 10. a = 5, B = 47◦, c = 9

11. a = 12, C = 94◦, b = 15 12. a = 22, b = 40, c = 27

For Exercises 13-16 solve for the unknown quantity in Figure: 4.14. (Not to scale)

IA I C

hc
a

b

α γ

B

β

Figure 4.14: UFO and radar stations
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13. To find the distance between two radar installations a UFO calculates the distance to
installation A to be c = 370 km, the distance to installation C to be a = 350 km, and
the angle between them β = 2.1◦. Find the distance between the installations.

14. To find the distance between two radar installations a UFO calculates the distance to
installation A to be c = 200 km, the distance to installation C to be a = 300 km, and
the angle between them β = 5.0◦. Find the distance between the installations.

15. Two radar stations located 80 km apart both detect a UFO located between them. Station
A calculates the distance to the object to be 20 km and Station C calculates the distance
as 92 km. Find the angles of elevation (α and γ) measured by both stations.

16. To find the distance between two radar installations a UFO calculates the distance to
installation A to be c = 420 km, the distance to installation C to be a = 150 km, and
the angle between them β = 4.0◦. Find the distance between the installations.

17. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction,
heading 10 degrees to the right of her original course, and flies 2 hours in the new direction.
If she maintains a constant speed of 680 miles per hour, how far is she from her starting
position?

18. Two planes leave the same airport at the same time. One flies at 20 degrees east of north
at 500 miles per hour. The second flies at 30 east of south at 600 miles per hour. How
far apart are the planes after 2 hours?

19.

Figure 4.15: Lake width

To find the distance across a small lake, a surveyor has
taken the measurements shown in Figure 4.15. Find the
distance across the lake.

20.

Figure 4.16: Wire Length

A 127 foot tower is located on a hill that is inclined
38◦ to the horizontal. A guy-wire is to be attached
to the top of the tower and anchored at a point 64
feet downhill from the base of the tower as seen in
Figure 4.16. Find the length of wire needed.
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Figure 4.17: Wire Length

21. A 113 foot tower is located on a hill that is inclined
34◦ to the horizontal. A guy-wire is to be attached to
the top of the tower and anchored at a point 98 feet
uphill from the base of the tower as seen in Figure
4.17. Find the length of wire needed.
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4.3 Area of a Triangle

Introduction

The formula for the area of a triangle is

Area =
1

2
(base) · (height) = 1

2
b · h

Any leg of the triangle can be used as the base but unless you have a right triangle the height
is not obvious. The proof of the law of sines provides a way to find the height. Consider
either of the triangles in Figure 4.18 where we know the lengths of the sides and the angles.
Now we can calculate the height h = c sinA so

A C

B

b

h a
c

Acute triangle

A C

B

b

ha
c

Obtuse triangle

Figure 4.18

Area =
1

2
b · h =

1

2
b · c · sinA

This formula works any time you know two sides and the included angle (SAS). The shape
of the triangle does not matter.

Formula for the Area of a Triangle

Given a triangle with angles A, B and C and sides a, b and c opposite those angles

Area =
1

2
b · h =

1

2
b · c · sinA =

1

2
b · a · sinC =

1

2
a · c · sinB.

Example 4.3.1
Find the area of a triangular lot having two sides of lengths 150 meters and 100 meters with
included angle of 99◦
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99◦

Ab = 150

c
=
10
0

Figure 4.19

Solution: Draw a diagram to represent the problem. Figure
4.19 Then apply the formula

Area =
1

2
b · c · sinA

=
1

2
· 150 · 100 · sin 99◦

= 7407m2

Heron’s Formula

When you have 3 sides of a triangle and do not know an angle Heron’s formula1 (sometimes
Hero’s formula) can be used. Heron’s formula will not be proved here but can be derived
using the law of cosines, the Pythagorean identiy and some clever factoring.

Heron’s Formula

Heron’s formula states that the area of a triangle whose sides have lengths a, b and c
is given by

Area =
√

s(s− a)(s− b)(s− c)

where s is the semiperimeter
s =

1

2
(a+ b+ c)

Example 4.3.2
A surveyor measures the sides of a tiangular parcel of land to be 206 feet, 293 feet and 187
feet. Find the area of the parcel.

Solution: When using Heron’s formula find the semiperimeter s first.

s =
1

2
(a+ b+ c) =

1

2
(206 + 293 + 187) = 343ft

Then calculate the area

Area =
√

s(s− a)(s− b)(s− c)

=
√
343(343− 206)(343− 293)(343− 187)

= 19100ft2

1Named after Heron of Alexandria who wrote about it in 60 AD. The formula was discovered indepen-
dently by the Chinese and their earliest known record of it is from Qin Jiushao in 1247 AD.
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Example 4.3.3
Find the area of the triangle with side lengths a = 1000000, b = 999999.9999979 and
c = 0.0000029.

Solution: The problem with this example is that many calculators will not provide the
correct answer because of the number of decimal places in the calculation of

a+ b+ c = 2000000.0000008

which has 14 digits. While most calculators will store 14 digits internally for calculations
they will only display 8 of them. Your calculator may round this to 2000000.0 so when
calculating (s − a) you get (s − a) = (1000000 − 1000000) = 0 which gives an area of 0.
Clearly this is not the correct answer. The correct answer is

Area = 0.99999999999895

There are two alterative forms of Heron’s formula. One from a 13th century Cinese text by
Qin Jiushao

Area =
1

2

√
a2c2 −

(
a2 + c2 − b2

2

)
where a ≥ b ≥ c

and one by William Kahan published in 2000. Arrange the sides so that a ≥ b ≥ c

Area =
1

4

√
[a+ (b+ c)][c− (a− b)][c+ (a− b)][a+ (b− c)]

Both of these will provide the correct answer in your calculator if you use all the parentheses
and brackets shown.

4.3 Exercises

For Exercises 1-6 find the area of the triangle △ABC.

1. A C

B

50◦

20

15c

2. A C

B

33.6◦

b

97
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3. A C

B

9

8

7

4. A C

B

100

7090

5. A C

B

120◦

3

6
c

6. A C

B

110◦

4

a
18

For Exercises 7-12 find the area of the triangle △ABC.

7. a = 10, b = 35, c = 30 8. b = 40, A = 75◦, c = 35

9. a = 40, B = 25◦, c = 30 10. a = 5, B = 47◦, c = 9

11. a = 12, C = 94◦, b = 15 12. a = 22, b = 40, c = 27

13. Find the area of the quadrilateral in Figure 4.20 below.

2

4 3.5

6

5.5

Figure 4.20: Exercise 13



Chapter 5

Additional Topics

5.1 Polar Coordinates

Introduction

Up to now we have done all our work in this course and previous courses in the Cartesian
Coordinate system. This is the square grid where we have an x-axis and a y-axis and every
point in the plane can be described by using two pieces of information: distance traveled in
the x direction and distance traveled in the y-direction. The points and their distances from
the origin are indicated as an ordered pair (x, y).

x

y

O polar axis

θ
y

x

r

(x, y) or (r, θ)

Figure 5.1: Point in the plane iden-
tified with Cartesian (x, y) and polar
(r, θ) coordinates

While this system of identifying points on the plane is
quite useful it is not the only way to do so. Another
way is the use of polar coordinates . Polar coordi-
nates are drawn in the plane starting at a fixed point
O called the pole or origin and a ray in the positive
x direction called the polar axis . Polar coordinates
also use two pieces of information to identify a point
in the plane:

θ: an angle measured from the polar axis

r: a directed distance from the pole.

Figure 5.1 shows a point in the plane identified with
both coordinate systems. In polar coordinates the
point is (r, θ). In Cartesian coordinates it is useful to
draw a square grid to measure distances in the x and

y directions but this grid is not what we need for polar coordinates. In polar coordinates we
have concentric circles that represent the radii and lines extending out radially indicating
the angles. See Figures 5.2 and 5.3 for two different versions. You can mark the angles

129
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in either degrees or radians but radians is the most common. We will primarily use radians
for all our work with polar coordinates in this text.

The angle θ can be both positive and negative just as when constructing reference angles.
When positive, it is measured starting at the polar axis traveling in the counter clockwise
direction and, when negative, it is measured in the clockwise direction. The radius r is called
a directed distance because it can also be positive or negative. If it is positive it is measured
from the origin in the direction of the angle and if negative it is measured in the opposite
direction. See Example 5.1.1

1 2 3 4 0◦

15◦

30◦

45◦

60◦
75◦90◦105◦

120◦

135◦

150◦

165◦

180◦

195◦

210◦

225◦

240◦

255◦ 270◦ 285◦
300◦

315◦

330◦

345◦

O

Figure 5.2: Polar graph paper in degrees

1 2 3 4O

π
12

π
6

π
4

π
3

5π
12

π
27π

12
2π
3

3π
4

5π
6

11π
12

π

13π
12

7π
6

5π
4

4π
3

17π
12 3π

2

19π
12

5π
3

7π
4

11π
6

23π
12

2π

Figure 5.3: Polar graph paper in radians

Example 5.1.1

Plot the points
(
1.5,

5π

6

)
and

(
−1.5,

7π

6

)
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1 2

(
1.5, 5π

6

) (
−1.5, 7π

6

)
π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

Figure 5.4

Solution: When graphing in polar coordinates always
find the angle first, then the radius. The line that rep-
resents the angle passes through the origin and extends
indefinitely in both directions. The lines representing
the angles in Figure 5.4 are marked with an arrow in
the positive direction. If the radius is positive you mea-
sure from the center in that direction. If the radius is
negative you measure in the opposite direction starting
from the center. Just as we could have an infinite num-
ber of representation for an angle drawn in standard
position there are an infinite number of ways to repre-
sent every point in polar coordinates. Notice that if we
plot

(
1.5,

π

6

)
it is the same point as

(
−1.5,

7π

6

)
.

Converting between Cartesian and Polar Coordinates

To convert between the coordinate systems we will use a triangle. By drawing a triangle on
our previous representation of a point on the plane we can use the trigonometric functions
and the Pythagorean theorem to relate x, y, r and θ.

Converting Between Polar and Cartesian Coordinates

x

y

O

θ
y

x

r

(x, y) or (r, θ)

Figure 5.5

cos θ =
x

r
x = r cos θ

sin θ =
y

r
y = r sin θ

tan θ =
y

x
r2 = x2 + y2

You need to be careful when calculating θ because
tan−1

(
y
x

)
only gives answers between −π

2
≤ θ ≤ π

2
.

Example 5.1.2
Convert the Cartesian points (1, 1) and (−2, 3) to polar coordinates.

Solution It is often best to plot the point before converting. It will be easier to see if you
answer makes sense. Figure 5.6 is the plot of (1, 1) and Figure 5.7 is the plot of (−2, 3)
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x

y

θ
1

1

r

(1, 1)

Figure 5.6

x

y

θ

θ′

3

−2

r

(−2, 3)

Figure 5.7

(x, y) = (1, 1) (x, y) = (−2, 3)

This is the standard 45− 45− 90 triangle so r =
√
22 + 32

r =
√
2 and r =

√
13

θ =
π

4
θ′ = tan−1

(
3
2

)
θ = π − θ′ = 2.16

(r, θ) =
(√

2,
π

4

)
(r, θ) =

(√
13, 2.16

)
Example 5.1.3

Convert the polar points
(
7,

π

3

)
and

(
7,−5π

3

)
to Cartesian coordinates.

x

y

y

x

(
7,
π

3

)
7

π
3

θ = − 5π
3

Figure 5.8

Solution Again we will plot the points before converting.
Figure 5.8 is the plot of

(
7,

π

3

)
and

(
7,−5π

3

)
. These

are both the same point so we only have to calculate the
Cartesian coordinates for one of them.

x = r cos θ y = r sin θ

= 7 cos
π

3
= 7 sin

π

3

=
7

2
=

7
√
3

2

(x, y) =

(
7

2
,
7
√
3

2

)
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Converting between Cartesian and Polar Equations

Example 5.1.4
Convert r = 2 cos θ to an equation in Cartesian coordinates and identify the shape of the
graph.

Solution: The conversion equations are x = r cos θ, y = r sin θ and r2 = x2+y2 so we would
like our original equation to have pieces that look like these conversions. Since neither side
of our original problem looks exactly like any of our conversion equations we will apply a
trick to make it look correct. The trick is to multiply by r on both sides of the equation and
then convert to cartesian. We will then complete the square to write it in the standard form
of a circle.

r = 2 cos θ original equation
r2 = 2r cos θ Multiply on both sides by r

x2 + y2 = 2x replace x2 + y2 = r2 and x = r cos θ

x2 − 2x+ y2 = 0 move all variables to left
x2 − 2x+ 1 + y2 = 1 complete the square

(x− 1)2 + y2 = 1 factor

The converted equation is (x− 1)2 + y2 = 1 which is a circle with center at (1, 0) and
radius 1.

Example 5.1.5
Convert y = 3x+ 2 to a polar equation.

Solution: Here we can use the two conversions x = r cos θ and y = r sin θ. We would like
to have an equation of the form r = f(θ) if possible so we will solve for r.

y = 3x+ 2

r sin θ = 3r cos θ + 2

r sin θ − 3r cos θ = 2

r(sin θ − 3 cos θ) = 2

r =
2

sin θ − 3 cos θ

Graphing Polar Equations

Example 5.1.6
Graph the polar equation r = θ
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Solution: To graph this we will create a table of points by selecting θ values and calculat-
ing the corresponding r values. Then we connect the dots with a smooth line traveling in
a clockwise direction around the circle (Figure 5.9). A more complicated graph will need
more points.

1 2 3 4 5 6 7 8 9

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

2πO

(
π
2 ,

π
2

)
(π, π)

(
3π
2 ,

3π
2

)

(2π, 2π)

(
5π
2 ,

5π
2

)

(3π, 3π)

Figure 5.9: r = θ

θ r (r, θ)
0 0 (0, 0)

π
4

π
4

(π
4
, π
4
)

π
2

π
2

(π
2
, π
2
)

3π
4

3π
4

(3π
4
, 3π

4
)

3π
2

3π
2

(3π
2
, 3π

2
)

π π (π, π)

5π
4

5π
4

(5π
4
, 5π

4
)

Example 5.1.7
Graph the polar equation r = 2 cos θ.

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2

Figure 5.10: r = 2 cos θ

Solution: To graph this we will create a table of
points by selecting θ values and calculating the cor-
responding r values. Then we connect the dots
with a smooth line traveling in a clockwise direc-
tion around the circle (Figure 5.10).

θ r (r, θ)
0 1 (0, 1)

π
6

√
3
2

(
π
6
,
√
3
)

π
3

1
2

(
π
3
, 1
)

π
2

0
(
π
2
, 0
)

2π
3

−3π
2

(
2π
3
,−

√
3
)

5π
6

−1
2

(
5π
6
,−1

)
π −1 (π,−2)
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It is not necessary to plot any more points because any extra points will be repeats of the
ones in the table. Notice that this is a circle of radius 1 centered at (1, 0) and this is also
what was calculated in Example 5.1.4. It is not always clear how many points you need
to get an accurate graph. It is better to have too many points than too few. While most of
the polar graphs are symmetric they can have interesting behavior.

Example 5.1.8
Graph the polar equation r = 1− 2 cos θ.

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2 3

Black: r = 1− 2 cos θ for 0 ≤ θ ≤ π

Red: r = 1− 2 cos θ for −π ≤ θ ≤ 0

Figure 5.11

Solution: To graph this we will create a ta-
ble of points by selecting θ values and calcu-
lating the corresponding r value. We will use
symmetry for this because cos θ = cos(−θ)
so we can plot the values 0 ≤ θ ≤ π
and we have equal values for the negative
values −π ≤ θ ≤ 0. Notice that this
graph is symmetric with respect to the polar
axis.

θ r (r, θ)
0 -1 (0,−1)

π
6

≈ −0.7321
(
π
6
,−0.7321

)
π
3

0
(
π
3
, 0
)

π
2

1
(
π
2
, 1
)

2π
3

2
(
2π
3
, 2
)

5π
6

≈ 2.7321
(
5π
6
, 2.7321

)
π 3 (π, 3)

Then we connect the dots with a smooth line traveling in a clockwise direction around the
circle (Figure 5.11). The solid black part of the graph is the table data and the red dashed
part of the graph is the part plotted with symmetry.

Example 5.1.9
Graph the polar equation r = 1 + 2 sin(2θ).

Solution: Since this equation has a 2θ inside the sine we will use values of θ in increments
of π

12
(or 15◦) because when we double those we are at multiples of π

6
(30◦) or π

4
(45◦). These

are the values that will be easier to graph because they are our special angles. We will
also start at − π

12
because that will be a point at the origin. We plot points to 7π

12
because

that brings the r values back to zero. This set of data produces the large lobe in the first
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quadrant. Continuing to plot points between 7π
12

≤ θ ≤ 11π
12

produces the smaller lobe in the
fourth quadrant.
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22π
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π
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4
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3 3π
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11π
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0 1 2 3

Figure 5.12: r = 1 + 2 sin(2θ)
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0
(
11π
12

, 0
)

The process of sketching the this figure is shown below. The process of sketching the points
in order, with a smooth curve, is demonstrated through the 10 diagrams.
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There are some general shapes that the polar graphs can have. The figure drawn in Example
5.1.8 is called a limaçon and is the name given to any curve with an equation of the form
r = a± b sin θ or r = a± b cos θ. The limaçon can take on one of four shapes depending on
the relationship between a and b. See Figure 5.13. The limacon will be symmetric with
the vertical axis if it is a sine graph and symmetric with the horizontal if a cosine graph.
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Figure 5.13: Some basic limaçons: r = a± b sin θ or r = a± b cos θ

Another typical shape with polar graphs is the rose shape. This was demonstrated in Exam-
ple 5.1.9. The rose curve comes from equations of the form r = a cos(nθ) or r = a sin(nθ)
and rose has n petals if n is odd and has 2n petals if n is even.
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Figure 5.14: Typical rose curves, both cosine and sine: r = a sinnθ or r = a cosnθ

5.1 Exercises

For Exercises 1-8 plot the point and convert from polar to Cartesian coordinates.
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1. (4, 210◦) 2.
(
5,

7π

6

)
3.
(
5,

3π

4

)
4.
(
3,

−3π

4

)
5.
(
4,

7π

3

)
6.
(
−5,

11π

4

)
7.
(
−3,

−3π

4

)
8.
(
2,

π

2

)

For Exercises 9-16 convert from Cartesian to polar coordinates.

9. (6, 2) 10. (−1, 3) 11. (1, 1) 12. (−3,−3)

13. (−7,−1) 14.
(
1,−

√
3
)

15.
(
−3

√
3,−3

)
16.

(
−
√
2

2
,

√
2

2

)

For Exercises 17-22 convert the Cartesian equation to a polar equation.

17. y = 3 18. y = x2 19. x2 + y2 = 9

20. x2 + y2 = 9y 21. y =
√
3x 22. 5y + x+ 2 = 0

For Exercises 23-28 convert the polar equation to a Cartesian equation.

23. θ =
π

4
24. r = 4 cos θ 25. r = 5

26. r = −6 sin θ 27. r =
4

sin θ + 7 cos θ
28. r = 2 sec θ

For Exercises 29-37 sketch the graph of the polar equation.

29. r = 4 cos θ 30. r = −6 sin(2θ) 31. r = 3 sin(5θ)

32. r = 4 + 4 cos θ 33. r = 1 + 2 cos(2θ) 34. r = 3 cos(3θ)

35. r = 5 36. r = 2 + 4 sin θ 37. θ =
π

4
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5.2 Vectors in the Plane

Introduction

We deal with many quantities that are represented by a number that shows their magnitude.
These include speed, money, time, length and temperature. Quantities that are represented
only by their magnitude or size are called scalars . When you travel in your car and you
look at the speedometer it tells you how fast you are going but not where you are going.
This is a scalar value and is called the speed.

A vector is a quantity that has both a magnitude (size) and a direction. To describe a
vector you must have both parts. If you know that you are traveling at 150 mph north then
that would be a vector quantity and it is called the velocity. It tells you how fast you are
traveling, speed is 150 mph, as well as the direction, north.

Vector Representations

~v =
−−→
PQ

Q

P

Figure 5.15: Equivalent vectors: same
magnitude and direction

When we write a vector there are two common ways
to do it. If we want to talk about “vector v” we can
either write the v in bold or write the v⃗ with an arrow
over it. In this text we will most often use the arrow
notation but do be aware that the bold notation is
also common.

To describe a vector we need to talk about both the
magnitude and direction. The magnitude of a vector
is represented by the notation ||v⃗||. The direction can
be described in different ways and depends on the
application. For example you might say that a jet is
traveling in the direction 10◦ north of east, or a force
is applied at a particular angle or with a particular
slope.

A vector can be represented by simply an arrow: in
Figure 5.15 the vector v⃗ =

−→
PQ which starts at point

P and ends at point Q has magnitude equal to its length (||v⃗||) and direction as indicated.
The vector can be moved around in the plane as long as the length and direction are un-
changed. All the vectors in Figure 5.15 are equivalent because they all have the same
length and point in the same direction. When the vector is drawn this way the length is
always the magnitude. An accurate picture is necessary to accurately describe a vector this
way. Sometimes it is called a directed line segment.

Example 5.2.1
Show that the directed segment u⃗ which starts at P (−3,−2) and ends at Q(1, 4) is equivalent
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to the directed segment v⃗ which starts at R(3, 1) and ends at S(7, 7).

x

y

~u =
−→
PQ

P

Q

−4 −3 −2 −1 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

4

5

6

7

~v =
−→
RS

R

S

Figure 5.16

Solution: To show that the two vectors are equivalent
we need to show that they have the same length and
direction. Using the distance formula we can see they
have the same length.

||u⃗|| =
√
(1− (−3))2 + (4− (−2))2

=
√
42 + 62

= 2
√
13

||v⃗|| =
√
(7− 3)2 + (7− 1)2

=
√
42 + 62

= 2
√
13

Both of these vectors have the same direction because they are both pointing to the upper
right and have the same slope:

∆y

∆x
=

(4− (−2))

(1− (−3))
=

(7− 3)

(7− 1)
=

3

2

Thus they are equivalent.

x

y

~v

~vx, x component

~vy, y component

θ
||~vy|| = ||~v|| sin θ

||~vx|| = ||~v|| cos θ

〈vx, vy〉

Figure 5.17: A vector split into the x
and y components

A vector drawn starting at the origin is in standard
position as shown in Figure 5.17. A vector in stan-
dard position has initial point at the origin (0, 0) and
can be represented by the endpoint of the vector (a, b).
This is known as representing the vector by com-
ponents: v⃗ = ⟨a, b⟩. It is common to see this written
as v⃗ = ⟨vx, vy⟩. See Figure 5.17. Notice the use
of “angle brackets” ⟨ ⟩ to write the vector. This dis-
tinguishes it from the point at the end of the vector.
Writing a vector as components is generally prefer-
able because it is easier to perform calculations with
components rather than directed line segments. Also,
while all the work in this book is with two dimen-
sional vectors you can also write vectors in three or
even more dimensions. It is very difficult to draw a
directed segment in three dimensions while writing it
with components is quite straight forward.
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If you want to write v⃗ from point P to point Q then v⃗ = P −Q. For example in Example
5.2.1 u⃗ =

−→
PQ = (1, 4)− (−3,−2) = ⟨4, 6⟩. It is important to subtract in the correct order.

It is always “end point” minus “starting point”. If you subtract in the wrong order you end
up with a vector that has the same length but points in the opposite direction.

Component Form of a Vector

The component form of a vector v⃗ with initial point P (p1, p2) and end point Q(q1, q2)
is −→

PQ = ⟨q1 − p1, q2 − p2⟩ = ⟨vx, vy⟩ = v⃗

The magnitude of v⃗, ||v⃗||, is found by the Pythagorean theorem.

||v⃗|| =
√

(q1 − p1)2 + (q2 − p2)2 =
√
(vx)2 + (vy)2

A vector of magnitude (or length) 1 is called a Unit Vector . To create a unit vector
you can divide any vector by its length. A unit vector in the direction of v⃗ is given by

unit vector in the direction of v⃗ =
v⃗

||v⃗||

Unit vectors are important because they can be used to represent the direction of the
vector. Any vector v⃗ can be written as a product of the magnitude and direction,
where the direction is the unit vector in the direction of v⃗

v⃗ = ||v⃗|| · v⃗

||v⃗||
= magnitude · direction

Example 5.2.2
Find the component form of the vector v⃗ that starts at P (1, 2) and ends at Q(−3, 4). Find
the length of v⃗. Find a unit vector in the direction of v⃗. Write v⃗ as “magnitude · direction”
where the direction is the unit vector. Sketch the vector in standard position.

x

y

~v = 〈−4, 2〉 P

Q

−5 −4 −3 −2 −1 1 2
−1

0

1

2

3

4

5

Figure 5.18

Solution: v⃗ = ⟨q1 − p1, q2 − p2⟩ = ⟨(−3− 1), (4− 2)⟩ =
v⃗ = ⟨−4, 2⟩

The length: ||v⃗|| =
√
(vx)2 + (vy)2 =

√
(−4)2 + (2)2 =

||v⃗|| = 2
√
5

Unit vector: u⃗ =
v⃗

||v⃗||
=

⟨−4, 2⟩
2
√
5

=

⟨
−2√
5
,
1√
5

⟩

“magnitude · direction” : v⃗ = 2
√
5 ·
⟨
−2√
5
,
1√
5

⟩
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Example 5.2.3
Write the component form of the vector v⃗ with magnitude 7 and direction θ = 132◦ measured
from the positive x axis. Sketch the vector in standard position. Find a unit vector in the
direction of v⃗. Write v⃗ as “magnitude · direction” where the direction is the unit vector.

x

y

||~v|| = 7

vx = −4.7

vy = 5.2

θ = 132◦

−5 −4 −3 −2 −1 1 2
−1

0

1

2

3

4

5

6

~v = 〈−4.7, 5.2〉

Figure 5.19

Solution: To write the vector in components we need
to calculate the two legs of the triangle shown in Fig-
ure 5.19. We can do this by using the sine and cosine
as was shown in Figure 5.17.

vx = ||v⃗|| cos θ = 7 cos(132◦) = −4.7

vy = ||v⃗|| sin θ = 7 sin(132◦) = 5.2

So v⃗ = ⟨−4.7, 5.2⟩ . Notice that the signs of the
trigonometric functions give the correct sign on the
components.

Unit vector: u⃗ =
v⃗

||v⃗||
=

⟨−4.7, 5.2⟩
7

=

⟨
−4.7

7
,
5.2

7

⟩

“magnitude · direction” : v⃗ = 7 ·
⟨
−4.7

7
,
5.2

7

⟩

Vector Operations

There are mathematical operations that we can do with vectors. The two most common are
multiplication by a scalar and vector addition . Recall that a scalar is a number. If you
want to multiply a vector v⃗ by a scalar k there are two ways to think about it. Multiplying
by the scalar k does not change the direction of the vector but makes it longer or shorter by a
factor of k. If you have your vector written in components v⃗ = ⟨vx, vy⟩ then each component
is multiplied by k:

k · v⃗ = k · ⟨vx, vy⟩ = ⟨k · vx, k · vy⟩

Example 5.2.4
Find the result when u⃗ = ⟨6,−1⟩ is multiplied by 7.

Solution: 7u⃗ = 7 ⟨6,−1⟩ = ⟨42,−7⟩

Example 5.2.5
Find the result when u⃗ = ⟨6,−1⟩ is multiplied by −1.

Solution: (−1)u⃗ = −u⃗ = (−1) ⟨6,−1⟩ = ⟨−6, 1⟩ .
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Note that −u⃗ is the same vector as u⃗ but pointing in the opposite direction. You can see
this if you sketch both on the same set of axes.

Adding vectors can be done two ways. We can add vectors that are written as directed line
segments or we can add them as components. If you wish to add u⃗ to v⃗ you draw v⃗ and
then draw u⃗ so that the tail of u⃗ starts at the head of v⃗. You can see in Figure 5.20 that
it does not matter in which order you do this. R⃗ = u⃗+ v⃗ = v⃗ + u⃗

~u

~v

tail of ~v

Head of ~v

~v

~u

~R = ~v + ~u

Head of ~v
to tail of ~u

~v

~u

~R = ~u+ ~v

Head of ~u
to tail of ~v

Move ~u and ~v so they are head to tail in either order.

Figure 5.20: Adding vectors can be done in either order.

If the vectors are written as components you can add the x components and the y components
separately. The component operations are summarized below.

Vector Addition and Scalar Multiplication

Given vectors u⃗ = ⟨ux, uy⟩ and v⃗ = ⟨vx, vy⟩ and scalar k then the sum or difference of
u⃗ and v⃗ is given by

u⃗+ v⃗ = ⟨ux, uy⟩+ ⟨vx, vy⟩ = ⟨ux + vx, uy + vy⟩

u⃗− v⃗ = ⟨ux, uy⟩ − ⟨vx, vy⟩ = ⟨ux − vx, uy − vy⟩

The scalar multiple of k and v⃗ is

k · v⃗ = k · ⟨vx, vy⟩ = ⟨k · vx, k · vy⟩
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Example 5.2.6
Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨−4, 2⟩, and find

(a) 3u⃗+ v⃗

(b) u⃗− v⃗

(c) v⃗ − 2u⃗

Solution: To add these we need to add the corresponding components. The order of
operations is still valid here, perform the scalar multiplication first and then the vector
addition.

(a) 3u⃗+ v⃗ = 3 ⟨1,−2⟩+ ⟨−4, 2⟩ = ⟨3,−6⟩+ ⟨−4, 2⟩ = ⟨−1,−4⟩

The solution is also shown in Figure 5.21 (a)

(b) u⃗− v⃗ = ⟨1,−2⟩ − ⟨−4, 2⟩ = ⟨5,−4⟩

To do this with arrows on paper it is easiest to draw −v⃗ and then add that to u⃗. Re-
member that −v⃗ is the same as v⃗ but the arrow is on the other end of the vector. The
solution is shown in Figure 5.21 (b) Notice that we can add in either order, the dotted
vectors are the result of −v⃗ + u⃗

(c) v⃗ − 2u⃗ = ⟨−4, 2⟩ − 2 ⟨1,−2⟩ = ⟨−4, 2⟩+ ⟨−2, 4⟩ = ⟨−6, 6⟩

Be careful with the sign when multiplying by the −2. The solution is shown in Figure
5.21 (c). Notice that we can add in either order, the dotted vectors are the result of
−2u⃗+ v⃗

x

y

3~u

~v

3~u+ ~v

−3 −2 −1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

0

1

2

(-1,-4)

(3,-6)

(a) 3~u+ ~v

x

y

~u

−~v

−~v

~u

~u−
~v

−1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

0

1

2

(1,-2)

(5,-4)

(b) ~u− ~v

x

y

~v

−2~u −2~u

~v

~v −
2~u

−7 −6 −5 −4 −3 −2 −1 1

−2

−1

0

1

2

3

4

5

6

7

( -4,2)

(-6,6)

(c) ~v − 2~u

Figure 5.21
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Example 5.2.7
To avoid a storm a jet travels 20◦ north of east from Winnipeg for 300 km and then turns to
a heading 62◦ south of east for 1150 km to arrive at Chicago. Find the displacement from
Winnipeg to Chicago.

East

R
esultant

vector

Winnipeg

Chicago

20◦
62◦

Figure 5.22

Solution: Figure 5.22 shows the flight path. It is a good
idea to draw a picture if possible. While it would be possible
to try and measure the vectors and angles it will be easier to
add these by components. We will calculate the components
for each leg of the journey and then add them up. For the
first leg −→

L1 = ⟨L1x, L1y⟩ we have

L1x = 300 cos(20◦) = 282

L1y = 300 sin(20◦) = 103

For the second leg −→
L2 = ⟨L2x, L2y⟩ we have

L2x = 1150 cos(62◦) = 540

L2y = −1150 sin(62◦) = −1015

It is important to notice that the y component is negative because it points in the negative
y direction. The picture will help make sure the signs are correct on your components.

The resultant vector is −→
L1 +

−→
L2 = ⟨282, 103⟩ + ⟨540,−1015⟩ = ⟨822,−912⟩. The distance

from Winnipeg to Chicago is the magnitude of the resultant vector. So the displacement is√
8222 + (−912)2 = 1228 km .

Example 5.2.8
An airplane is traveling with a ground speed of 750 km/hr at a bearing 37◦ west of north
when it encounters a strong wind with a velocity 100 km/hr at a bearing of 60◦ north of
east. Find the resultant speed and direction of the airplane. Figure 5.23

E

N

Initial bearing

wi
nd

R⃗

(

127◦

θ

Figure 5.23: Not to scale

Solution: The resultant speed and direction of the air-
plane (R⃗) is the sum of the plane’s ground speed velocity
vector and the wind speed vector. Figure 5.23 shows
the relationship between the vectors. To add them we will
first write them as components. Let P⃗ = ⟨Px, Py⟩ be the
airplane ground speed vector and W⃗ = ⟨Wx,Wy⟩ be the
wind speed vector.

P⃗ = 750 ⟨cos(127◦), sin(127◦)⟩
≈ ⟨−451, 599⟩ km/hr

W⃗ = 100 ⟨cos(60◦), sin(60◦)⟩
≈ ⟨50, 87⟩ km/hr
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Note the signs on the components of the vectors and compare them to the figure. You expect
the x component of the airplane’s ground speed vector to be negative, and it is.

So the velocity of the plane in the wind is

R⃗ = P⃗ + W⃗

≈ ⟨−451, 599⟩+ ⟨50, 87⟩
≈ ⟨−401, 686⟩ km/hr

and the resultant speed of the airplane

||R⃗|| ≈
√

(−401)2 + (686)2

≈ 795km/hr

For the bearing we will use the angle θ made with the negative x axis as shown in the figure.

θ = tan−1

(
686

401

)
≈ 59.7◦

which we write as 59.7◦ north of west. And we can put them together to say the airplane is
traveling at 795 km/hr bearing 59.7◦north of west

Example 5.2.9
A common use for vectors in physics and engineering applications is adding up forces acting
on an object. Suppose there are three forces acting on an object as shown in Figure 5.24,
a 40 Newton1 force acting at 30◦, a 30 Newton force acting at 300◦ and a 50 Newton force
acting at 135◦. Find the resultant force vector acting on the object.

x

y

F1 = 40 N

F3 = 30 N

F2 = 50 N

30◦

135◦

60◦

Figure 5.24

Solution: The resultant force will be the sum of all the
vectors. To add them we will first write them as compo-
nents. Since we are measuring all the the angles from the
horizontal x-axis the signs of each of the components will
be correct because the sine and cosine functions will be
positive and negative in the correct quadrants. You can
verify this by noticing that the x component of F2 and the
y component of F3 are both negative.

F⃗1 = 40 ⟨cos(30◦), sin(30◦)⟩
≈ ⟨34.641, 20⟩N

F⃗2 = 50 ⟨cos(135◦), sin(135◦)⟩
≈ ⟨−35.355, 35.355⟩N

F⃗3 = 30 ⟨cos(300◦), sin(300◦)⟩
≈ ⟨15,−25.981⟩N

1A Newton (N) is a metric unit of force N = kg·m
s2
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R⃗ = F⃗1 + F⃗2 + F⃗3 = ⟨34.641, 20⟩+ ⟨−35.355, 35.355⟩+ ⟨15,−25.981⟩

R⃗ = ⟨14.286, 29.375⟩

We can find the magnitude

||R⃗|| =
√
14.2862 + 29.3752 ≈ 32.664 N

and direction of the resultant vector:

θ = tan−1

(
29.375

14.286

)
≈ 64◦

5.2 Exercises

For Exercises 1-2 write the vector shown in component form.

1.

Q

P

2.
P

Q

For Exercises 3-4 given the vectors shown, sketch u⃗+ v⃗, u⃗− v⃗, and 2u⃗.

3.

u⃗ v⃗

4.

u⃗
v⃗

For Exercises 5-10 write the vector v⃗ =
−→
PQ in the form of v⃗ = (magnitude) · (direction)

where the direction is a unit vector. See Example 5.2.2.
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5. P = (1, 2), Q = (−2, 3) 6. P = (−3, 2), Q = (−3, 3)

7. P = (0, 1), Q = (−2,−7) 8. P = (−40, 23), Q = (5,−5)

9. P = (−4, 2), Q = (2,−3) 10. P = (1, 2), Q = (0, 0)

For Exercises 11-14 write the vector in component form from the given magnitude and
direction.

11. Magnitude: 6; direction: 30◦ 12. Magnitude: 7; direction: 120◦

13. Magnitude: 8; direction: 225◦ 14. Magnitude: 9; direction: 330◦

For Exercises 15-18 given the vectors, compute 3u⃗, 2u⃗+ v⃗, and u⃗− 3v⃗.

15. u⃗ = ⟨2,−2⟩, v⃗ = ⟨3, 2⟩ 16. u⃗ = ⟨1,−2⟩, v⃗ = ⟨−4, 2⟩

17. u⃗ = ⟨2,−3⟩, v⃗ = ⟨1, 2⟩ 18. u⃗ = ⟨3, 4⟩, v⃗ = ⟨5,−6⟩

19. A woman leaves home and walks 3 miles west, then 2 miles southwest. How far from
home is she, and in what direction must she walk to head directly home?

20. A boat leaves the marina and sails 6 miles north, then 2 miles northeast. How far from
the marina is the boat, and in what direction must it sail to head directly back to the
marina?

21. A person starts walking from home and walks 4 miles east, 2 miles southeast, 5 miles
south, 4 miles southwest, and 2 miles east. How far have they walked? If they walked
straight home, how far would they have to walk?

22. A person starts walking from home and walks 4 miles east, 7 miles southeast, 6 miles
north, 5 miles southwest, and 3 miles east. How far have they walked? If they walked
straight home, how far would they have to walk?

23. Three forces act on an object: F⃗1 = ⟨2, 5⟩, F⃗2 = ⟨8, 3⟩ and F⃗3 = ⟨0,−7⟩. Find the net
force acting on the object.

24. Three forces act on an object: F⃗1 = ⟨−2, 5⟩, F⃗2 = ⟨−8,−3⟩ and F⃗3 = ⟨5, 0⟩. Find the net
force acting on the object.

25. Suppose there are three forces acting on an object, a 10 Newton force acting at 45◦, a 20
Newton force acting at 210◦ and a 15 Newton force acting at 315◦. Find the resultant
force vector acting on the object.

26. A person starts walking from home and walks 6 miles at 40◦ north of east, then 2 miles
at 15◦ east of south, then 5 miles at 30◦ south of west. If they walked straight home, how
far would they have to walk, and in what direction?
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27. An airplane is heading north at an airspeed of 600 km/hr, but there is a wind blowing
from the southwest at 80 km/hr. How many degrees off course will the plane end up
flying, and what is the plane’s speed relative to the ground?

28. An airplane is heading north at an airspeed of 500 km/hr, but there is a wind blowing
from the northwest at 50 km/hr. How many degrees off course will the plane end up
flying, and what is the plane’s speed relative to the ground?

29. An airplane needs to head due north, but there is a wind blowing from the southwest at
60 km/hr. The plane flies with an airspeed of 550 km/hr. To end up flying due north,
the pilot will need to fly the plane how many degrees west of north?

30. An airplane needs to head due north, but there is a wind blowing from the northwest at
80 km/hr. The plane flies with an airspeed of 500 km/hr. To end up flying due north,
the pilot will need to fly the plane how many degrees west of north?

31. As part of a video game, the point ⟨5, 7⟩ is rotated counterclockwise about the origin
through an angle of 35 degrees. Find the new coordinates of this point.

32. As part of a video game, the vector ⟨7, 3⟩ is rotated counterclockwise about the origin
through an angle of 40 degrees. Find the new coordinates of this point.
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Appendix A

Answers and Hints to Selected
Exercises

Chapter 1

Section 1.1 (page 9)

1.
120◦

, 480◦, −240◦

2.
−120◦

, 240◦, −480◦

3.
−30◦

, 330◦, −390◦

4.

217◦

, 577◦, −143◦

5. −217◦ , 143◦, −577◦

6.
−115◦

, 330◦, −390◦

7. 982◦ , 208◦, −152◦

8.
1234◦

, 154◦, −206◦

9. −1234◦ , 206◦, −154◦

10. −515◦ , 205◦, −155◦

11.
π
2 , 5π

2
, −3π

2

12.

5π
3

, 11π
3

, −π
3

13.
−5π
3

, π
3
, −11π

3

14.
3π
7 , 17π

7
, −11π

7

15.
11π
6 , 23π

6
, −π

6

16.
5π

, π, −π

151
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17.
5π

, 1.849, −4.434

18. , π
3
, −5π

3

19. , π
4
, −7π

4

20. , 2π
3

, −4π
3

21. 2π
3

22. 23π
36

23. 3π
4

24. −85π
36

25. −3π
2

26. π
12

27. 90◦ 28. 60◦

29. 45◦ 30. 36◦ 31. −30◦ 32. −330◦

33. 12◦ 30′ 34. 125◦ 42′

35. 539◦ 15′ 36. 7352◦ 7′ 12′′

37. 12.203◦ 38. 25.972◦

39. 0.371◦ 40. 1.017◦

41. 52◦ 7′ 60′′, 106◦ 40′ 12′′

42. 35 mi 43. 6 ft 44. 25.1 cm

45. 31.4 mi 46. 22.9◦

47. 2.58 million miles

48. 120.5 km 49. 3.373 km

50. 1
2

radian 51. 0.4 radian

52. 14.14 cm2 53. 897.6 cm2

Section 1.2 (page 20)

2. sinA = 5
√
61

61
, cosA = 6

√
61

61
, tanA = 5

6

cscA =
√
61
5

, secA =
√
61
6

, cotA = 6
5

sinB = 6
√
61

61
, cosB = 5

√
61

61
, tanB = 6

5

cscB =
√
61
6

, secB =
√
61
5

, cotB = 5
6

3. sinA = 5
6
, cosA =

√
11
6

, tanA = 5
√
11

11

cscA = 6
5
, secA = 6

√
11

11
, cotA =

√
11
5

sinB =
√
11
6

, cosB = 5
6
, tanB =

√
11
5

cscB = 6
√
11

11
, secB = 6

5
, cotB = 5

√
11

11

4. sinA = 5
√
34

34
, cosA = 3

√
34

34
, tanA = 5

3

cscA =
√
34
5

, secA =
√
34
3

, cotA = 3
5

sinB = 3
√
34

34
, cosB = 5

√
34

34
, tanB = 3

5

cscB =
√
34
3

, secB =
√
34
5

, cotB = 5
3

5. sinA = 3
5
, cosA = 4

5
, tanA = 3

4

cscA = 5
3
, secA = 5

4
, cotA = 4

3

sinB = 4
5
, cosB = 3

5
, tanB = 4

3

cscB = 5
4
, secB = 5

3
, cotB = 3

4

6. sinA = 7
25

, cosA = 24
25

, tanA = 7
24

cscA = 25
7

, secA = 25
24

, cotA = 24
7

sinB = 24
25

, cosB = 7
25

, tanB = 24
7

cscB = 25
24

, secB = 25
7

, cotB = 7
24

7. sinA = 1
2
, cosA =

√
3
2

, tanA =
√
3
3

cscA = 2, secA = 2
√
3

3
, cotA =

√
3

sinB =
√
3
2

, cosB = 1
2
, tanB =

√
3

cscB = 2
√
3

3
, secB = 2, cotB =

√
3
3

8. sinA = 5
13

, cosA = 12
13

, tanA = 5
12

cscA = 13
5

, secA = 13
12

, cotA = 12
5

sinB = 12
13

, cosB = 5
13

, tanB = 12
5

cscB = 13
12

, secB = 13
5

, cotB = 5
12

9. sinA =
√
5
3

, cosA = 2
3
, tanA =

√
5
2

cscA = 3
√
5

5
, secA = 3

2
, cotA = 2

√
5

5

sinB = 2
3
, cosB =

√
5
3

, tanB = 2
√
5

5

cscB = 3
2
, secB = 3

√
5

5
, cotB =

√
5
2

10. sinA = 3
4
, cosA =

√
7
4

, tanA = 3
√
7

7

cscA = 4
3
, secA = 4

√
7

7
, cotA =

√
7
3

11. sinA =
√
7
4

, cosA = 3
4
, tanA =

√
7
3

cscA = 4
√
7

7
, secA = 4

3
, cotA = 3

√
7

7

12. sinA = 3
5
, cosA = 4

5
, tanA = 3

4

cscA = 5
3
, secA = 5

4
, cotA = 4

3

13. sinA = 2
√
2

3
, cosA = 1

3
, tanA = 2

√
2

cscA = 3
√
2

4
, secA = 3, cotA =

√
2
4
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14. sinA = 12
13

, cosA = 5
13

, tanA = 12
5

cscA = 13
12

, secA = 13
5

, cotA = 5
12

15. sinA = 2
√
5

5
, cosA =

√
5
5

, tanA = 2

cscA =
√
5
2

, secA =
√
5, cotA = 1

2

16. sinA =
√
2
3

, cosA =
√
7
3

, tanA =
√
14
7

cscA = 3
√
2

2
, secA = 3

√
7

7
, cotA =

√
14
2

17. sinA = 2
√
34

17
, cosA = 3

√
17

17
, tanA = 2

√
2

3

cscA =
√
34
4

, secA =
√
17
3

, cotA = 3
√
2

4

18. cosA =
√
1− x2, tanA = x√

1−x2

19. π
4
;

√
2
2

20. π
3
; 2 21. 30◦;

√
3
3

22. 45◦;
√
2 23. 45◦; π

4
24. 45◦; π

4

25. a = 10; b = 20
√
3

26. DE = 2(
√
3−

√
2)

27. (x1, y1) = (82.272, 47.5)
(x2, y2) = (47.5, 82.272)

Section 1.3 (page 30)

7. 53◦ 8. 70◦ 9. 70◦ 10. 18◦ 11. 37◦

12. sin θ = −3
5

, cos θ = 4
5
, tan θ = −4

3

13. sin θ = −12
13

, cos θ = −5
13

, tan θ = 12
5

14. sin θ = −15
17

, cos θ = 8
17

, tan θ = −15
8

15.
√
3

1
2

30◦

sin θ = 1
2
, cos θ =

√
3
2

, tan θ =
√
3
3

16. −1

1

√
2

45◦

sin θ =
√
2
2

, cos θ = −
√
2

2
, tan θ = −1

17.

−
√
3

−1
2

30◦

sin θ = −1
2
, cos θ = −

√
3
2

, tan θ =
√
3
3

18.

1

−1√
2

45◦

sin θ = −
√
2
2

, cos θ =
√
2
2

, tan θ = −1

19.

−1

−1 √
2

45◦

sin θ = −
√
2
2

, cos θ = −
√
2
2

, tan θ = 1

20. 1

1

√
2

π/4

sin θ =
√
2
2

, cos θ =
√
2
2

, tan θ = 1

21.

−1

−
√
3

2

π/3

sin θ = −
√
3
2

, cos θ = −1
2
, tan θ =

√
3

22.

−
√
3

−1
2

π/6

sin θ = −1
2
, cos θ = −

√
3
2

, tan θ =
√
3
3

23. 1

√
3

2

π/3

sin θ =
√
3
2

, cos θ = 1
2
, tan θ =

√
3

24.

−1

−1 √
2

45◦

sin θ = −
√
2
2

, cos θ = −
√
2
2

, tan θ = 1

25. sin θ =
√
7
4

, tan θ =
√
7
3

and
sin θ = −

√
7
4

, tan θ = −
√
7
3

26. sin θ =
√
7
4

, tan θ = −
√
7
3

and
sin θ = −

√
7
4

, tan θ =
√
7
3

27. sin θ =
√
15
4

, tan θ =
√
15 and

sin θ = −
√
15
4

, tan θ = −
√
15

28. sin θ = 1, tan θ undefined
sin θ = −1, tan θ undefined
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29. sin θ = 0, tan θ = 0

30. cos θ =
√
7
4

, tan θ = 3√
7

and
cos θ = −

√
7
4

, tan θ = − 3√
7

31. cos θ = −
√
7
4

, tan θ = − 3√
7

and
cos θ =

√
7
4

, tan θ = − 3√
7

32. cos θ =
√
15
4

, tan θ =
√
15
15

and
cos θ = −

√
15
4

, tan θ = −
√
15
15

33. cos θ = 1, tan θ = 0
cos θ = −1, tan θ = 0

34. cos θ = 0, tan θ undefined

35. sin θ = 3
5
, cos θ = 4

5
and

sin θ = −3
5
, cos θ = −4

5

36. sin θ = 3
5
, cos θ = −4

5
and

sin θ = −3
5
, cos θ = 4

5

37. sin θ =
√
17
17

, cos θ = 4
√
17

17
and

sin θ = −
√
17
17

, cos θ = −4
√
17

17

38. sin θ = 0, cos θ = 1
sin θ = 0, cos θ = −1

39. sin θ =
√
2
2

, cos θ =
√
2
2

sin θ = −
√
2
2

, cos θ = −
√
2
2

40. sin θ = 15
17

, cos θ = 8
17

, tan θ = 15
8

csc θ = 17
15

, sec θ = 17
8

, cot θ = 8
15

41. sin θ = − 9
15

, cos θ = −12
15

, tan θ = 9
12

csc θ = −15
9

, sec θ = −15
12

, cot θ = 12
8

42. sin θ = 20
29

, cos θ = 21
29

, tan θ = 20
21

csc θ = 29
20

, sec θ = 29
21

, cot θ = 21
20

43. sin θ =
√
41
21

, cos θ = −20
21

, tan θ = −
√
41
20

csc θ = 21
√
41

41
, sec θ = −21

20
, cot θ = −20

√
41

41

44. sin θ = 1, cos θ = 0, tan θ = undef.
csc θ = 1, sec θ = undef., cot θ = 0

45. 0.7986 46. −0.3420 47. 1.0642

48. −3.0777 49. 1.2521 50. 0.7265

51. −1.3764 52. 1.7013 53. undefined

54. −1.0613

55. 5.6222, 4.6852, 0.2885, −0.4997

Section 1.4 (page 37)

9. (x, y) =
(
−

√
3
2
, 1
2

)
sinα = 1

2
, cosα = −

√
3
2

, tanα = −
√
3
3

cscα = 2
1
, secα = −2

√
3

3
, cotα = −

√
3

10. (x, y) =
(
−

√
2
2
,
√
2
2

)
sin θ =

√
2
2

, cos θ = −
√
2
2

, tan θ = −1

csc θ =
√
2, sec θ = −

√
2, cot θ = −1

11. (x, y) =
(
−

√
2
2
,−

√
2
2

)
sin γ = −

√
2
2

, cos γ = −
√
2
2

, tan γ = 1

csc γ = −
√
2, sec γ = −

√
2, cot γ = 1

12. (x, y) = (1, 0)
sin β = 0, cos β = 1, tan β = 0
csc β undef., sec β = 1, cot β undef.

13. (x, y) = (−1, 0)
sinα = 0, cosα = −1, tanα = 0
cscα undef., secα = −1, cotα undef.

14. (x, y) =
(
−

√
2
2
,
√
2
2

)
sinα =

√
2
2

, cosα = −
√
2
2

, tanα = −1

cscα =
√
2, secα = −

√
2, cotα = −1

15. (x, y) =
(
−1

2
,
√
3
2

)
sin θ =

√
3
2

, cos θ = −1
2
, tan θ = −

√
3

csc θ = 2
√
3

3
, sec θ = −2, cot θ = −

√
3
3

16. (x, y) =
(
−1

2
,−

√
3
2

)
sin γ =

√
3
2

, cos γ = −1
2
, tan γ = −

√
3

csc γ = 2
√
3

3
, sec γ = −2, cot γ = −

√
3
3

17. (x, y) = (−1, 0)
sin β = 0, cos β = −1, tan β = 0
csc β undef., sec β = −1, cot β undef.
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18. (x, y) = (0, 1)
sinα = 1, cosα = 0, tanα undef.
cscα = 1, secα = undef., cotα = 0

19. 3
4

20. 4
3

21. −4
3

22. 3
4

23. 3
4

24. 4
3

25. 4
3

26. 4
3

Section 1.5 (page 43)

1. a = 4.201, B = 55◦, c = 7.325

2. A = 84◦, b = 0.526, c = 5.026

3. A = 54◦, b = 0.727, c = 1.236

4. a = 1.045, B = 84◦, b = 9.945,

5. A = 66◦, a = 6.395, b = 2.847

6. B = 89◦, b = 114.580, c = 114.597

7. a = 12, B = π
4
, c = 12

√
2

8. A = π
6
, a = 18, b = 18

√
3

9. x = 50.640 10. x = 15.655

11. x = 36.879 12. h = 16.629 ft
13. h = 836 ft 14. h = 600 ft
15. h = 28.58 ft 16. h = 21.61 ft
17. h = 241 ft 18. c = 69.34

19. c = 61.31 ft 20. w = 396.3 ft
21. h = 330.5 m 22. d = 80550000 mi
23. h = 15434 ft 24. d = 1.917× 1013 mi

Chapter 2

Section 2.1 (pg. 56)

1.

x

y

0

3

−3
π
2

π 2π 5π
2

4π

amp = 3, period = 2π, no shifts.

2.

x

y

0

3

−3

π
2

2π

5π
2

4π

amp = 3, period = 2π, no shifts.

3.

x

y

0

3

−3

π
4

π

5π
4

2π

amp = 3, period = π, no shifts.

4.
x

y

01
4
7

π
4

π
2

π 5π
4

2π

amp = 3, period = π, v. shift up 4.

5.

x

y

0

1/4

−1/4
π
2

π 2π 5π
2

4π

amp = 1/4, period = 2π, no shifts

6.

x

y

0

1

−1

4π

8π

12π

16π

amp = 1, period = 8π, no shifts

7.

y

center line
−4.5
−4

−3.5

π
2

π 2π 5π
2

4π

amp = 1/2, period = 2π, down 4
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8.

x

y

0

−2
−1

1
2

−π
4

π
4

3π
4

5π
4

9π
4

13π
6

15π
4

amp = 2, period = 2π, right π
4

9.

y

−3

−5
−4

−2
−1

π
4

3π
4

5π
4

9π
4

13π
6

15π
4

amp = 2, period = 2π, right π
4
, down 3

10.

x

y

−2

2

−π
4 π

4

π
2

3π
4

π 5π
4

7π
4

amp = 2, period = π, left π
4

11.
x

y

0

0.5
1

1.5

−π
4

π
4

π
2

3π
4

π 5π
4

7π
4

amp = 1/2, period = π, left π
4

up 1

12.

x

y

0

3

−3
3
2

3 6 15
2

12

amp = 3, period = 6, no shifts.

15. y = 2 sin(5x) 16. y = 3 + 3 sin x

17. y = 3− 2 sin
(
x
2

)
18. f(t) = 50 + 7 sin

(
πt
12

)
19. f(t) = 68 + 12 sin

(
πt
12

)
20. y = 4 sin

(
x
3

)
− 2

21. y = 2 cos
(
πx
2

)

22. x = L−R(1− cos θ)

Section 2.2 (pg. 64)

1.

x

y

0

−24
−18
−12
−6

6
12
18
24

π
2

π 3π
2

−π
2

−π

period π, no shifts

2.

x

y

0

−12
−9
−6
−3

3
6
9

12

π
2

π 3π
2

2π−π
2

−π−3π
2

−2π

period 2π, No shifts

3.

x

y

0

−12
−9
−6
−3

3
6
9

12

π
4

π
2

3π
4

π−π
4−π

2−3π
4

−π

period π, No shifts
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Section 2.3 (pg. 73)

1. π
4

2. −π
4

3. 0 4. 0 5. π

6. π
2

7. π
2

8. −π
2

9. π
6

10. 5π
6

11. π
4

12. −π
4

13. 0 14. π
3

15. −π
3

16. π
3

17. −π
5

18. 4π
5

19. π
5

20. −5π
6

21. 5π
6

22. π
3

23. π
3

24. −π
3

25. DNE

26. 4
5

27. 4
5

28. 3
5

29.
√
1− x2

30.
√
9−x2

x
31.

√
9−x2

3
32.

√
x2+4
x

33. 40◦

Section 2.4 (pg. 80)

For all solutions n ∈ Z

1. π
4
, 3π

4
2. 4π

3
, 5π

3
3. 7π

6
, 11π

6
4. π

2
, 3π

2

5. 2π
3

, 4π
3

6. π
3
, 4π

3
7. π

4
+ nπ

8. π
6
+ 2nπ, 5π

6
+ 2nπ

9. π
6
+ 2nπ, 11π

6
+ 2nπ

10. π
6
+ 2nπ, 11π

6
+ 2nπ

11. nπ 12. π
3
+ 2nπ, 4π

3
+ 2nπ

13. π
12

, 5π
12

, 13π
12

, 17π
12

14. 3π
8

, 7π
8

, 11π
8

, 15π
8

15. 8π
3

, 10π
3

16. 7π
12

, 11π
12

, 19π
12

, 23π
12

17. π
8
, 3π

8
, 5π

8
, 7π

8
, 9π

8
, 11π

8
, 13π

8
, 15π

8

18. π
12
, 7π

12
, 3π

4
, 5π

4
, 17π

12
, 23π

12

19. 0, π, π
4
, 5π

4
20. π

6
, 5π

6
, 7π

6
, 11π

6

21. 0, π, 3π
4
, 7π

4
22. π, 2π

3
, 4π

3

23. π
3
, 2π

3
, 4π

3
, 5π

3
, 3π

4
, 5π

4

24. 0, π, 2π
3
, 4π

3
25. π

6
, 5π

6
, 3π

2

26. 0, π
4
, 3π

4
, π, 5π

4
, 7π

4

27. 0, π
4
, 3π

4
, π, 5π

4
, 7π

4

28. π
6
, 5π

6
, 3π

2
29. 0.2898, − 2.8518

30. 1.8442, 4.4390 31. 1.4633, 4.6049

32. 0.1449, 1.4259, 3.2865, 4.5675

33. 1.1832, 1.9584, 4.3248, 5.1000

34. 0.4658, 1.4658, 2.4658, 3.4658, 4.4658, 5.4658

Chapter 3

Section 3.1 (pg. 87)

1. 1 2. secx 3. tan t

4. tanx 5. csc t 6. 1− sinx

7. cot θ sec θ 8. tan θ sec θ 9. sec2 θ

10. 2 csc2 θ 11. csc θ 12. tan2 x

Answers will vary for exercises 13 - 18

Section 3.2 (pg. 92)

1. tanx 2. csc t 3. 1− sinx

4. tan θ 5. csc θ 6. cscx

Answers will vary for exercises 7 - 28

29. sinx = ±1, x = π
2
, 3π

2

30. tan θ = 1, θ = π
4
, 5π

4

31. 2 sin2 x+ sinx− 1 = 0, x = π
6
, 5π

6
, 3π

2

32. sin2 x− 6 sin x− 1 = 0
Quadratic formula, x = 3.3046, 6.1202

33. sinx(secx− 3) = 0,
x = 0, π, 1.2310, 5.0522
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34. 2 sec2 θ − 3 sec θ − 1 = 0
Quadratic formula θ = 1.2862, 4.9970

Section 3.3 (pg. 100)

1.
√
6−

√
2

4
2.

√
6−

√
2

4
3. −2−

√
3

4.
√
2−

√
6

4
5.

√
2−

√
6

4
6.

√
6−

√
2

4

7. undefined 8.
√
2+

√
6

4
9.

√
6+

√
2

4

10. −
√
2−

√
6

4
11. 2−

√
3 12. −

√
6−

√
2

4

13.
√
6−

√
2

4
14.

√
6−

√
2

4
15.

√
3− 2

16.
√
6+

√
2

4
17. 1 18. −

√
2
2

19. 0 20.
√
2
2

21. undefined

22. 0 23. − sinx 24. − cosx

25. − cosx 26. tanx 27. secx

28. csc t 29. tanx 30. cotx

31. 84
85

, −13
85

, −84
13

32. 204
325

, −253
325

, −204
253

33. 56
65

, −33
65

, −56
33

34. 5
√
7+3

√
119

48
, 7

√
17−15
48

, 5
√
7+3

√
119

7
√
17−15

35. −10+12
√
5

39
, 24+5

√
5

39
, −10+12

√
5

24+5
√
5

36. 24−5
√
5

39
, 10+12

√
5

39
, 338

√
5−540

620

37. 181
√
194

2522
, 5

√
194

2522
, 181

5

38. 40x−9
√
1681−x2

412
, −9x+40

√
1681−x2

412
,

40x−9
√
1681−x2

−9x+40
√
1681−x2

39.
√
2(

√
1−x2−x)
2

40. 2
√
3+x

2
√
x2+4

Section 3.4 (pg. 107)

1. (a)
√
63
32

(b) 31
32

(c)
√
63
31

(d) 47
128

2. (a) −4
√
21

25
(b) −17

25
(c) 4

√
21

17
(d) 9

√
21

125

3. cos(2x) 4. 2 cos x 5. 3 cos(6x)

6. −2 cos(4x) 7. cos(10x) 8. 2 sin(2x)

9. 1
2
sin(2x) 10. cos(34◦)

11. θ = 0, π, 2.4189, 3.8643

12. θ = π
2
, 3π

2
, 3.9897, 5.4351

13. θ = π
2
, 3π

2
, π
6
, 5π

6
14. θ = 3π

2
, π
6
, 5π

6

15. θ = 0, π
2
, π, 3π

2
, π

6
, 5π

6
, 7π

6
, 11π

6

16. 1
2
(1 + cos(4θ)) 17. 3

8
− cos(2x)

2
+ cos(4x)

8

18. 1
8
(3− 4 cos(6x) + cos(12x))

19. 1
8
(1− cos(2x))

20. 1
16
(1− cos(2x)− cos(4x) + cos(4x) cos(2x))

21. 1
16
(1 + cos(2x)− cos(4x)− cos(4x) cos(2x))

22.
√

2+
√
3

2
23.

√
2−

√
3

2
24. 2 +

√
3

25.
√

2−
√
2

2
26.

√
2+

√
2

2
27.

√
2− 1

28. −
√

2+
√
3

2
29. −

√
2−

√
3

2
30. 2 +

√
3

31. (a)
√

50+35
√
2

10
, (b) −

√
50−35

√
2

10
, (c) 5

√
2+7

32. (a)
√
26
26

, (b) −5
√
26

26
, (c) −1

5

33. (a)
√
6
4

, (b) −
√
10
4

, (c) −3
√
5

5
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Chapter 4

Section 4.1 (pg. 114)

1. A = 60◦, a = 18.43, c = 16.30

2. A = 60◦, b = 16.73, c = 12.25

3. A = 49.05◦, C = 65.95◦, c = 6.05

4. B = 52.25◦, C = 57.75◦, b = 84.14

5. A = 35◦, b = 4.42, c = 9.06

6. B = 30◦, a = 12.31, b = 9.58

7. C = 120◦, b = 7.37, c = 15.10

8. A = 47.31◦, C = 57.69◦, a = 30.44

9. C = 95◦, a = 9.68, b = 10.65

10. Two solutions
B = 69.52◦, C = 68.48◦, c = 9.95
B = 110.48◦, C = 27.52◦, c = 3.45

11. B = 136.52◦, C = 18.48◦, b = 65.13

12. No solution

13. B = 24.56◦, C = 61.44◦, c = 10.57

14. No solution

15. Two solutions
B = 56.31◦, C = 82.69◦, c = 18.60
B = 123.69◦, C = 15.31◦, c = 4.95

16. Two solutions
B = 59.92◦, C = 70.08◦, b = 24.85
B = 20.08◦, C = 109.92◦, b = 9.86

17. 14.98 km 18. 3.20 km 19. 44.93 km

20. 6.20 km 21. 16750.8 m

22. 5.12 km 23. 26.36 km

Section 4.2 (pg. 121)

1. A = 47.97◦, B = 82.03◦, c = 15.47

2. B = 95.76◦, C = 50.64◦, b = 5.01

3. A = 58.41◦, B = 73.40◦, C = 48.19◦

4. A = 42.83◦, B = 76.23◦, C = 60.94◦

5. A = 40.90◦, B = 19.10◦, c = 7.94

6. A = 57.95◦, B = 12.05◦, a = 16.24

7. A = 15.36◦, B = 112.02◦, C = 52.62◦

8. B = 57.47◦, C = 47.53◦, a = 45.83

9. A = 110.30◦, C = 44.70◦, b = 18.02

10. A = 33.18◦, C = 99.81◦, b = 6.68

11. A = 37.08◦, B = 48.92◦, c = 19.85

12. A = 31.33◦, B = 109.01◦, C = 39.66◦

13. b = 23.96 km 14. b = 102.26 km

15. α = 121.22◦, γ = 10.70◦

16. 271 km 17. 2371 mi

18. 1996 mi 19. 978.51 ft

20. 173.88 ft 21. 99.94 ft

Section 4.3 (pg. 127)

1. 114.91 2. 17.43 3. 26.8

4. 3059.4 5. 7.8 6. 30.5

7. 139.1 8. 676.1 9. 253.6

10. 16.5 11. 89.8 12. 280.8

13. 12.2
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Chapter 5

Section 5.1 (pg. 137)

1 2 3 4 5

1.
2.

3.

4.

5.

6.

7.8.
π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3 3π

2

5π
3

7π
4

11π
6

2π

1.
(
−3

√
3,−3

)
2.
(
−5

√
3

2
,−5

2

)
3.
(
−5

√
2

2
, 5

√
2

2

)
4.
(
−3

√
2

2
,−3

√
2

2

)
5.
(
2, 2

√
3
)

6.
(

5
√
2

2
,−5

√
2

2

)
7.
(

3
√
2

2
, 3

√
2

2

)
8. (0, 2)

9.
(
2
√
10, 18.43◦

)
10.

(√
10, 108.43◦

)
11.

(
2, π

4

)
12.

(
3
√
2, 5π

4

)
13.

(
5
√
2, 188.1◦

)
14.

(
2, 5π

6

)
15.

(
6, 7π

6

)
16.

(
2, 3π

4

)
17. r = 3 csc θ 18. r = tan θ sec θ

19. r = 3 20. r = 9 sin θ

21. θ = π
3

22. r = −2
5 sin θ+cos θ

23. y = x 24. (x− 2)2 + y = 4

25. x2 + y2 = 25 26. x2 + (y + 3)2 = 9

27. y + 7x = 4 28. x = 2

For Exercises 29-37 a solution can
be graphed using an online tool such
as http://www.wolframalpha.com or
https://www.desmos.com/calculator

Section 5.2 (pg. 147)
1. −→

PQ = ⟨−2, 4⟩ 2. −→
PQ = ⟨3, 2⟩

3.

u⃗

v⃗

u⃗+ v⃗
u⃗−v⃗

u⃗− v⃗

2u⃗

4.

u⃗

v⃗

u⃗
+
v⃗

u⃗ −v⃗

u⃗− v⃗

2u⃗

5. −→
PQ =

√
10 ·

⟨
−3√
10
, 1√

10

⟩
6. −→

PQ = 1 · ⟨0, 1⟩

7. −→
PQ = 2

√
17 ·

⟨
−1√
17
, −4√

17

⟩
8. −→

PQ = 53 ·
⟨
45
53
, −28

53

⟩
9. −→

PQ =
√
37 ·

⟨
6√
37
, 1√

37

⟩
10. −→

PQ =
√
5 ·
⟨

−1√
5
, 2√

5

⟩
11. v⃗ =

⟨
3
√
3, 3
⟩

12. v⃗ =
⟨

−7
2
, 7

√
3

2

⟩
13. v⃗ =

⟨
4
√
2,−4

√
2
⟩
14. v⃗ =

⟨
9
√
3

2
, −9

2

⟩
15. 3u⃗ = ⟨6,−6⟩, 2u⃗+ v⃗ = ⟨7, 2⟩,

u⃗− 2v⃗ = ⟨−7,−8⟩
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16. 3u⃗ = ⟨3,−6⟩, 2u⃗+ v⃗ = ⟨−2,−2⟩,
u⃗− 2v⃗ = ⟨13,−8⟩

17. 3u⃗ = ⟨6,−9⟩, 2u⃗+ v⃗ = ⟨5,−4⟩,
u⃗− 2v⃗ = ⟨−1,−9⟩

18. 3u⃗ = ⟨9, 12⟩, 2u⃗+ v⃗ = ⟨11, 2⟩,
u⃗− 2v⃗ = ⟨−12, 22⟩

19. distance 4.635 miles,
direction 17.76◦ north of east

20. distance 7.548 miles,
direction 79.2◦ south of west

21. total distance 17 miles,
distance from home 10.3 miles

22. total distance 25 miles,

distance from home 8.77 miles

23. R⃗ = ⟨10, 1⟩ 24. R⃗ = ⟨−5, 2⟩

25. R⃗ = ⟨0.357,−13.536⟩ N

26. distance 0.972 miles,
direction 36◦ north of west

27. speed 658 km/h, 4.924◦ east

28. speed 465.7 km/h, 4.351◦ east

29. fly 4.424◦ west of north

30. fly 6.496◦ west of north

31. (0.081, 8.602)

32. (3.434, 6.798)
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Index

acute angle, 7
adjacent side, 13
algebraic transformations, 50
ambiguous case (SSA), 111
amplitude, 50
angle, 1
angle of depression, 40
angle of elevation, 40
arcsine, 66

Cartesian coordinates, 23, 129
cofunction, 36
complementary angles, 7
conjugate, 89
conjugate angles, 7
coterminal angle, 3

degree, 2
DMS, 5
domain, 35, 65
double angle formulas, 102

explementary angles, 7

function, 65

half angle formulas, 106
Heron’s formula, 126
hypotenuse, 12

identity, 18
initial side, 1
inverse function, 65
inverse trigonometric functions, 39

Law of cosines, 118
Law of sines, 110
legs of a right triangle, 12
limaçon, 137

magnitude, 139
minutes, 5

oblique triangle, 109
obtuse angle, 7
opposite side, 13

period, 35
periodic, 35
phase shift, 53
polar axis, 129
polar coordinates, 129
pole, 129
power reducing formulas, 105
Pythagorean identities, 19
Pythagorean Theorem, 12

radian, 2
range, 35, 65
reciprocal identities, 19
reference angle, 23
reference triangle, 23
right angle, 7

scalar, 139
seconds, 5
sector, 9
solving a triangle, 39
special triangles, 15
standard position, 1
straight angle, 7
supplementary angles, 7

terminal side, 1
trigonometric functions, 13, 14

unit circle, 32
unit vector, 141

vector, 139
vector addition, 142
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