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6 CHAPTER 1. THE NUMBER SYSTEM AND ALGEBRAIC OPERATIONS

1.1 Numbers

Example 1.1.1:

Listing Method

{a, e, i , o, u}

{1,1,2,3,5,8,13,21}

{2,5,3,8,14,1,7}

notice that when listing the el-
ements in a set that the order
doesn’t matter. In this book most
of the sets that we deal with will be
specific sets of numbers such as
integers, or rational numbers, etc.

Example 1.1.2:

Set-Builder

{x | x is a real number}

{x | x is an integer}

The way to read or describe a set
in set-builder notation is to begin
on the left. Looking at the first set
in the examples says: all values of
x such that x is a real number.

Example 1.1.3:

Interval Notation

(−∞,∞) = all real numbers

[0,10) = all numbers beginning at
0 and up to 10 but not including
10.

In interval notation we use [ or ] to
include a number, and a ( or ) to
exclude a number.

A fundamental aspect to our work in math is an understanding of the differ-
ent types of numbers. One type of numbers you use every day is the counting
numbers , or natural numbers. These numbers are {1,2,3,4, · · · }. Another set
of numbers you use everyday to measure, such as while cooking or building
somthing, are called rational numbers (i.e. 1

2 cup, or 3
4 inch).Since we’re going

to be talking about the different sets of numbers in mathematics we might as
well begin with using the correct notation when referring to these sets. In math-
ematics, there are several ways of defining a set, either by listing the numbers
or members in the set, using set-builder notation, or interval notation. Listing
the objects or members of the set can be seen example 1.1.1, while another
could be to verbally describe the set which is typically done using set-builder
notation as can be seen in example 1.1.2. The last method that we’ll be looking
at is interval notation where the list of numbers is bound between two other
numbers as in example 1.1.3. In any case, a set is always defined by using curly
brackets or just brackets, { }, with the exception of interval notation.

1.1.1 Integers

The whole numbers is the set of natural numbers that includes 0. However,
some problems require the following arithmetic 2−6 = −4 where −4 is not in
the set of whole numbers, thus requiring the use of a new set of numbers called
integers that includes negative values. The following set is the set of integers
defined using the listing method.

{· · · ,−3,−2,−1,0,1,2,3, · · · }

The negative numbers are called the negative integers and the natural num-
bers are called the postive integers. The number 0 is neither positive nor neg-
ative. Positive numbers can be written with a plus sign in front of them as
+1,+2,+3, · · · but this is not necessary nor typically practiced. The numbers
{0,1,2,3, · · · } are called nonnegative integers or whole numbers.

1.1.2 Rational Numbers

Rational numbers are used to represent the division, or ratio, of one integer
by a another integer. There are both positive and negative rational numbers.
Rational numbers can be used to express nearly any number in more than one
way. For example, the numbers 4

2 , 8
4 , 2

1 , and 242
121 are all different ways of repre-

senting the number 2. In addition, any terminating, or repeating decimal is a
rational number since it can be written as a ratio of integers (i.e. 0.33 = 1

3 ) .
The following is a list of some rational numbers including 0 since the division
of zero and any other number, including integers, will always simplify to zero.

{
0, 3,

22

5
, − 7

3
,

289

17
,
−1

3
,

28

14
, 0.3, 1.23, 0.33

}
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1.1.3 Irrational Numbers

Example 1.1.4:

3.141592653589793238462643...

π is an irrational number with
non-terminating and non-
repeating decimal values.

Irrational numbers are numbers that can not be represented as the ratio of
two integers. It was once thought that any number could be written as a ratio-
nal number and it was eventually proved that not all numbers (i.e.

p
2) can not

be written as the division of two integers, either positive or negative. In com-
plete contrast to the early belief, it has since been proven that there are just as
many irrational numbers as there are rational ones. The following are examples
of just a few irrational numbers.{p

2,
p

3,
p

5,π,−p17
}

An irrational number is best described as a number whose decimal representa-
tion is both non-repeating and non-terminating as illustrated in example 1.1.4.

1.1.4 Real numbers

When rational numbers are combined with irrational numbers, we get the set
of real numbers. For the most part the work done in this course will involve
the set of real numbers; however, we will be covering the complex numbering
system as well which involve imaginary numbers.

At times it is convenient to represent the real numbers on a line called the num-
ber line as illustrated below. The typical number line is a horizontal line that
has been marked in equally spaced intervals. One of these marks is called the
origin and is indicated by the number zero (0). The marks to the right are la-
beled with positive integers and the marks to the left of the origin are marked
with negative integers.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Even though all the other numbers are not visibly present on the number line
such as π,

p
2, ϕ, or any other irrational number, those numbers are implied.

Of course we could always indicate approximately where those numbers are on
the number line.

−5 −4 −3 −2 −1 0 1 2 3 4 5

πp
2

ϕ p
5

1
3- 1

2 e

−p5

origin

Figure 1.1: Number Line
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Example 1.1.5:

To show that a value is among a
set, or a member of a set, the ∈
symbol is used as in the following
examples:

3 ∈ Z says that 3 is in the set of
integers, or 3 is an integer.

p
3 ∈ R\Q says that

p
3 is an irra-

tional number.

n ∈ R says that n is a real number,
or n is in the set of real numbers.

Symbols for Sets of Numbers

Throughout this book, and mathematics in general, we will often
reference specific sets of numbers, such as integers or rationals, often.
However, the listing method shown above to reference such sets gets
cumbersome and tedious after a while so from now on I will refer to the
following universal symbols to represent each of the following sets:

Symbol Name Set/Description

N Naturals {1,2,3, · · · }

Z Integers {· · · ,−3,−2,−1,0,1,2,3, · · · }

Q Rationals

{
p

q

∣∣∣ p,and q are integers and q 6= 0

}

R Reals

{
x
∣∣∣ x can be either rational

or irrational

}
R\Q Irrationals

{
x
∣∣∣ x can not be represented as

the ratio of two integers

}

note: There is no symbol designated for the set of irrational numbers
so we take the set of real numbers and subtract the rational numbers
which leaves the irrational numbers as represented by R\Q. The back-
slash (\) is traditionally used for subtraction in set arithmetic although
the more familiar symbol minus (-) has also been used.

1.1.5 Decimals

Number Decimal Repeats

1

2
= 0.5000 · · · 0

13

4
= 3.2500 · · · 0

1

3
= 0.3333 · · · 3

41

11
= 3.727272 · · · 72

Table 1.1: Repeated Decimals

Each real number can be represented by a decimal number. The rational num-
bers are represented by repeating decimals, and irrational numbers are repre-
sented by non-repeating decimals. The decimal representation of a real num-
ber allows us to position the number accurately on the number line.

Repeating decimals are decimals that have a value that is repeated indefinitely
as in Table 1.1.

Sometimes repeating decimals are represented with a bar over top of the part
that is repeated instead of writing out enough decimal places to imply which
number(s) is/are repeated. If accuracy and precision are important, which they
usually are, then simply writing out enough decimal places to suggest the num-
ber that’s repeated is unacceptable since this will throw off both the accuracy
and precision of the number (more on this in section 1.3). To overcome this, re-
peating decimals are typically written with a bar over top the digit(s) that is/are
are repeating. For example, if we use the repeating decimals in Table 1.1 the
values would look like 1

2 = 0.50, 17
4 = 4.250, 1

3 = 0.33, 41
11 = 3.72.
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Numbers that have zero as the repeating number are called terminating deci-
mals and are typically written without indicating the repeating zero unless its
necessary to indicate precision. For example, we write 1

2 = 0.5 and 17
4 = 4.25.

Terminating decimals are a special type of decimal and are important because
they can be given an exact decimal representation where non-terminating dec-
imals can only have an approximate decimal representation which are called
irrational numbers.

Irrational numbers are represented by non-repeating and nonterminating dec-
imals. For example, below are the decimal representations of four irrational
numbers

p
2 = 1.414213...

p
7 = 2.6457513...

π= 3.141592653589... −15

2
=−1.93649167...

When adding an irrational number to a rational number you will always end up
with an irrational number as the result. However, this is not to imply that the
addition of any number with an irrational number will result in an irrational
number. For example, if you take

p
3−p

3 we get a result of zero which is a
rational number. The same goes for the product of certain rational numbers.

Take
p

3∗p
3 and we get

p
3

2 = 3 as a result which is rational, so do not make
the mistake of thinking that any time we perform arithmetic on an irrational
number that the result must also be irrational.

1.1.6 Fractions

The numbers
3

2
and

−1

1000
are both fractions. On the number line these num-

bers are what appear in between the integers.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Number Line

5
2

7
3

13
6

8
3

17
6

−5 −4 −3 −2 −1 0 1 2 3 4 5

Number Line

5
2

7
3

13
6

8
3

17
6

Figure 1.2: Numberline Depicting Fractions

In the picture above, a fraction is described as a number that appears in be-
tween two integers on a number line. More specifically a fraction is part of a
whole, but a whole what? The whole can be represented as just about anything
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that can be divided up into parts such as a circle (pie), or a length of something
such as a ruler. The bottom number of a fraction is called the denominator and
the top number is called the numerator. The denominator (bottom) indicates
how many parts the whole is divided up, while the numerator (top) indicates
the position the fraction is with respect to the denominator. In figure 1.3 is a
ruler showing 16th in marks which means that between each whole number
such as 0 and 1, or 1 and 2, that the distance between those two numbers has
been divided into 16 equal partitions. The first segment would be 1

16 the second
segment is located at 2

16 , then 3
16 , and 4

16 etc. These fractions are reducible such
as 4

16 = 1
4 , and what this means is that if we took the distance from 0 and 1 and

divided it into 4 equal partitions, then 1
4 and 4

16 would be located at the exact
same location on the ruler. It is important to understand the details of a frac-
tion, and the relationship between the numerator and the denominator. From
here we can see why its necessary to find a common denominator before we
can add or subtract two fractions because the denominator is essentially defin-
ing a unit of measurement, and like all units of measurement such as feet (ft) ,
or kilometers (km), we must make sure that all of our measurements are in the
same units before we combine them.

Figure 1.3: Ruler with 16th in. marks
1.1.7 Absolute Value

One of the basic ideas is how far from 0 (the origin) a number is. This idea is
called the absolute value, denoted as |a|, which will effectively make any num-
ber positive to indicate the distance that value is from the origin. In figure 1.4
we can see that the absolute value of a, |a|, is the same on either side of the
origin. the distance that a or -a is from zero is the absolute value of a, and all
distances are positive.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−a a

|a| |a|

Figure 1.4

Example 1.1.6:

|−4| = 4, |4| = 4

|−1.618| = 1.618, |1.618| = 1.618

|p7| =p
7, |−p

7| =p
7
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1.1.8 Properties of Real Numbers

Though it’s important to know the different types of sets of numbers, It is just
as important if not more so to understand the properties of the real number in
order to combine them. These properties are essential in manipulating mathe-
matical expressions and solving equations.

Example 1.1.7:

5−3 = 2,but 3−5 =−2

−10−2 =−12,but −2− (−10) = 8

4÷5 6= 5÷4,or
4

5
6= 5

4

Properties of Real Numbers

a +b = b +a Commutative property for addition

ab = ba Commutative property for multiplication

(a +b)+ c = a + (b + c) Associative property for addition

(ab)c = a(bc) Associative property for multiplication

a(b + c) = ab +ac
Distributive property for multiplication
over addition

a +0 = a Identity element for addition

a ·1 Identity element for multiplication

It is important to note that both subtraction and division are not
commutative, nor are they associative. As shown in example 1.1.7.

1.1.9 Denominate Numbers

Measurment Unit
Abbrev-
iation

Length feet ft

Length inches in

Length miles mi

Length kilometers km

Length meters m

Length milimeters mm

Mass miligram mg

Mass kilograms kg

Mass grams g

Area
square
feet

ft2

Volume
cubic
yards

yd 3

Table 1.2: Units of Measurement

Numbers that are paired with a unit of measurement such as ft or km are called
denominant numbers. For example, 10ft is called a denominant number be-
cause it is has the symbol for feet appended to it. We do not typically spell
out feet to define a certain number of feet rather we use ft, or another com-
mon notation is 10′. Looking closer at the symbol ft, or mi , one would assume
that these symbols represent abbreviations for both feet and mile respectively;
however, they are not abbreviations. Rather, they are symbols, and as a con-
sequence a period does not succeed them. Similarly we would not write out
kilometers to represent a denominant number in kilometers; instead we would
use km such 0.3km. Table 1.2 lists some common notations used in some dif-
ferent units of measurement, but not a complete list. Most of the units listed
here you probably will recognize. As we progress through the various chapters
in this book, you will undoubtedly learn more.
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1.2 Fundamental Operations with Real Numbers

In section 1.1 we talked about the properties of real numbers, and the first prop-
ery that we listed was the commutative property for addition. The commutative
property states that if two numbers are added, then it doesn’t matter in which
order they are added as shown in example 1.2.1. The same goes for the com-
mutative law for multiplication. Any two numbers can be multiplied together

Example 1.2.1:

5+4 = 4+5 = 9

−2+ (−3) =−3+ (−2) =−5

3× (−2) =−2×3 =−6

regardless of the order which can also be seen in example 1.2.1.

Keep in mind that all of these properties are very important, especially when
attempting to manipulate, or solve equations. One such property is the dis-
tributive law for multiplication over addition which is illustrated in example
1.2.2.

Example 1.2.2:

a (b + c) = a ×b +a × c

Notice that there is no times operator between the variable a and the parenthe-
sis , (, in example 1.2.2. In these instances where no operator is present, then
multiplication is always implied. Eventually we quit using the times symbol, ×,
in favor of just a dot, such as a ·b, to state multiplication mainly due to the fact
that we often use the letter x within our equations, and the two symbols look
too much alike and may mistake one for the other. It is also common to not use
any symbol at all, such ab = a ×b, which still means to multiply. Below are a
few more examples with real numbers of the distributive law.

1.

3 (4+1) = 3×4+3×1

= 3 ·4+3 ·1

= 12+3

= 15

same expression with a
different symbol
for multiplication

2. A good application, among many, for the distributive property is for con-
verting degrees fahrenheit (◦F ) to degrees celsius (◦C ). Using the formula
below, lets convert 12◦F to celsius.

T ◦C = 5

9
(T ◦F −32)



1.2. FUNDAMENTAL OPERATIONS WITH REAL NUMBERS 13

Solution:

To solve this problem we only need to replace our given temperature in
fahrenheit with the variable in our formula. In this case we replace T ◦F
with 12.

T ◦C = 5

9
(12−32)

= 5

9
·12− 5

9
·32

= 20

3
− 160

9

=−100

9

≈−11◦C

Note: When using the formula to con-
vert from fahrenheit to celsius, it is as-
sumed that the student aleady knows
how to add and multiply fractions. In
addition, the ≈ symbol is used to de-
note an approximation. This will occurr
anytime we have to round off a decimal
value.

1.2.1 Order of Operations

The order of operations is a collection of rules that determine which procedures
within a mathematical expression to do first, then second and so forth. For
example, multiplication is given higher priority over addition and subtraction.
Therefore, we have to perform the multiplication operation before we can add
or subtract. In the expression: 1+2 ·3 we would have to perform 2 ·3 first, then
add that result to 1. This is illustrated in Example 1.2.3.

Example 1.2.3:

1+2 ·3 = 1+6

= 7

It’s often necessary to perform certain calculations out of order such as adding
before multiplying. As in Example 1.2.3 we may have wanted to perform the ad-
dition first, and in this case we could have used a grouping symbol such as the
parenthesis to accomplish that. Within the order of operations we always per-
form operations within grouping symbols first. In the cases where more than
one grouping symbol is used we would perform the inner most group first and
work our way outward. For example, if we want to perform the addition first be-
fore multiplication in Example 1.2.3, then we would write the expression with
parenthesis around 1+2 such as (1+2)·3 and the result of this would have given
us a 9 instead of the previous result of 7.

Order of Operations

1. Operations within a grouping symbol, such as parenthesis, nu-
merator and denominator of a fraction, or expressions bound un-
der a radical symbol, p , must be performed first.

2. Exponents are calculated second.
3. Multiplication and divisions are performed in the order in which

they appear from left to right, and are done before adding and
subtracting.

4. Addition and Subtraction are also performed in the order in
which they appear from left to right.

There is an acronym that some use to help remember the order of operations,
PEMDAS (Parentheses, Exponents, Mulitiplication, Division, Addition, Subtrac-
tion), but as you become more familiar with the operations most people will be
able to perform the operations in the correct order without difficulty.
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Example 1.2.4:

36÷ (2+4)

To evaluate 36÷(2+4) we have to perform the operation within the paren-
thesis first giving us the expression 36÷6 where we can now divide 36 by 6
which gives 36÷6 = 6

note: Eventually we will stop using the
division symbol, ÷, in favor of express-
ing division in fractional form. No-
tice that example 1.2.4 can be written

as
36

2+4
where as its not necessary to

put parentheses around 2+4 since the
numerator and denominator denote a
grouping symbol in itself.

Example 1.2.5:

2+8 ·2÷4

In this example we have a little more going on with both multiplication
and division; however, the order of operations tells us to perform multipli-
cation and division in the order that they appear from left to right, so in
this case we have to multiply the 8 and 2 first giving us 2+ 16÷ 4. Now,
we since division comes before addition we calculate 16÷4 next giving us
2+4 = 6.

Figure 1.5: Calculating Airspeed

Ground speed (Gs )

Wind speed (Ws )

Air speed (As )

As =Gs −Ws

A direct application to adding real numbers is calculating the airspeed (As ) of a
plane. In figure 1.5 is an image of a plane indicating its ground speed (Gs ), wind
speed (Ws ) , and its air speed. The formula for calculating the airspeed is given
as As =Gs −Ws , where the airplane is always moving in a positive direction. If
the plane is traveling at 600 mph in the same direction as the wind at 30 mph,
then the resultant air speed of the plane would be As = 600−30 = 570 mph.

Example 1.2.6:

Calculate the air speed of a jet traveling with a ground speed of 640 mph
with a headwind (opposite direction of plane) of 90 mph.

Solution:

Since the air is travelling in the opposite direction to the plane, then we
assign a value that is negative for the wind speed. This is done since we
assume that the jet is always travelling in the positive direction, thus the
Ws =−90 and Gs = 640.

As = 640− (−90)

= 640+90

= 730 mph

note: Anytime we subtract a negative the result is positive.
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Example 1.2.7:

Solve 5+36÷18×6−7×3

Solution: Recall that the order of operations require that we perform mul-
tiplication and division in the order they appear from left to right, then we
can perform the addition and subtraction in the order they appear from
left to right.

5+36÷18×6−7×3 = 5+2×6−7

= 5+12−7

= 17−7

= 10

Example 1.2.8:

Solve (14+2(3−6)+5(7−1))

Solution: We begin with the inner-most parentheses first and work our
way out. In this case we have two sets of parentheses that we can evaluate
at the same time since one is not nested within the other.

(14+2(3−6)+5(7−1)) = (14+2(−3)+5 ·6)

= 14−6+30

= 8+30

= 38

1.2.2 Operations with zero

If b is a real number then the following are the properties of zero under the
operation of addition, subtraction, multiplication, and division:

b +0 = b

b −0 = b 0−b =−b

b ×0 = 0

0÷b = 0 which is the same as
0

b
= 0 if b 6= 0

b ÷0 = b

0
⇒ Does not exist

b 6= 0 means that b is not equal to 0.
Since it is not possible to divide by 0, we

would say that
a

0
does not exits.



16 CHAPTER 1. THE NUMBER SYSTEM AND ALGEBRAIC OPERATIONS

Example 1.2.9:

Evaluate 4+ 0

2.1
+5.2×3.7×0

Solution:

4+ 0

2.1
+5.2×3.7×0 = 4+0+5.2×3.7×0

= 4+19.24×0

= 4+0

= 4
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1.3 Exponents and Roots

1.3.1 Exponents

Figure 1.6: Square Area

4 cm

4 cm

It is often necessary to multiply a number by itself either once, or multiple
times. For instance, as illustrated in figure 1.6, when we want to determine the
area of a square. To calculate the area of a square all we need to do is multiply
the length of one of the sides by itself since all sides are the same. In figure 1.6
we can determine the square area in centimeters by multiplying 4 by itself, thus
we have 4 cm ·4 cm = 16 square centimeters

Another way of representing a number being multiplied by itself is by using
exponents. In the previous example we could denote 4 · 4 by 42. The smaller
number 2 written to the upper right of 4 is called the exponent while the larger
written number 4 is called the base. The base is the number that will be mul-
tiplied repeatedly, and the exponent determines how many times the base is
multiplied.

Example 1.3.1:

24 = 2 ·2 ·2 ·2 −begin by multiplying from the left

= 4 ·2 ·2 −continue multiplying from the left

= 8 ·2

= 16

Here’s another example where the base is 5 and the exponent is 3.

Example 1.3.2:

53 = 5 ·5 ·5

= 25 ·5

= 125

Of course we can also work the other way. Instead of multiplying a single num-
ber multiple times, we can represent that number as an exponent in an attempt
to avoid dealing with one large number.

Example 1.3.3:

3 ·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3 = 39

= 19683
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Example 1.3.4:

(−2)4 = (−2)(−2)(−2)(−2) − If no operator is present, then multiplication is implied

= 4(−2)(−2)

=−8(−2)

= 16

Figure 1.7: Cube

x

x
x

The volume, V, of a cube is defined by taking either the length, height, or width
since they are all the same and multiplying by itself 3 times; which is also known
as cubing.

V = x3

Example 1.3.5:

How many cubic feet are in one cubic yard of concrete.

Solution: There are 3 feet in one yard, thus we take a base of 3 with an
exponent of 3.

33 = 3 ·3 ·3 = 27

Thus, there is 27 cubic feet of concrete in one cubic yard.

Properties of Exponents

1. am ·an = am+n

2.
am

an = am−n , if a 6= 0

3. (ab)n = an ·bn

4.
( a

b

)n
= an

bn , if b 6= 0

5.
(
am)n = amn = (

an)m

6. a0 = 1, if a 6= 0

7. a−n = 1

an

8. npam = am/n

Example 1.3.6:

Use the properties of exponents to verify that
26

23 = 26−3 = 23 = 8.

Solution:

26

23 = 2 ·2 ·2 ·2 ·2 ·2

2 ·2 ·2
=

162 · 162 · 162 ·2 ·2 ·2

62
1
· 62

1
· 62

1

= 23 = 8

Note: In example 1.3.6 we can cancel
out the values of 2 because everything
in both the numerator and denomina-
tor are being multiplied. If there were
any values being added or subtracted,
then those operations would have to be
done first before any cancellation can
occur.
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Example 1.3.7:

Use property 1. to show that 32 ·33 = 35.

Solution:
32 ·33 = (3 ·3) · (3 ·3 ·3) = 35 = 243

Example 1.3.8:

Using properties of exponents, expand (2x2 y)3.

Solution:

(2x2 y)3 = 23(x2)3 y3 property 3

= 8x2·3 y3 property 5

= 8x6 y3

Example 1.3.9:

Simplify
72

710 with a result that consists of only positive exponents.

Solution:

72

710 = 72−10 combine the two bases using
property 2.

= 7−8

= 1

78 use property 7. to rewrite
using positive exponents.

Example 1.3.10:

Simplify
x3 yr−2

r−3x5 y−1 with positive exponents only.

Solution:

x3 yr−2

r−3x5 y−1 = x3−5 y1−(−1)r−2−(−3) combine like bases using
property 2.

= x−2 y2r Simplify the exponents. recall
−(−a) = a.

= y2r

x2 rewrite as positive exponents
using property 7.

The total resistance of a parallel circuit
is given by:

R =
(

1

R1
+ 1

R2

)−1

An example of a simple parallel circuit
is shown in figure 1.8

Figure 1.8: Parallel Circuit

−
+ R1 R2

Example 1.3.11:

Find the total resistance, R, of a parellel circuit when R1 = 300 Ω and
R2 = 200 Ω
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Solution:

R =
(

1

R1
+ 1

R2

)−1

=
(

1

300
+ 1

200

)−1

substitute R1 = 300 and
R2 = 200

=
(

200+300

300 ·200

)−1

add the two fraction within
parenthesis first.

=
(

300 ·200

200+300

)
the reciprocal of

a

b
is the same

as
( a

b

)−1
= b

a

= 120

The total resistance is 120 Ω.

1.3.2 Roots

A radical , p , is a symbol we use to define the root of a number or an ex-

pression such as 3p8, or say
p

a +b. A common misconception with the radical
symbol is that some people refer to it as the square root symbol and automat-
ically assume we want the square root which is not the case. We may want to
find the 3r d root as in 3p8, possibly the 1

2 root, or any nth root.

There are three components to roots:

n
p

a
1. n is the degree of the root

2. a is the radicand.

3. the symbol, p , is called the radical

The nth root of a number x, say the square root of x for this instance, is a num-
ber such that when squared will equal x. For example, the square root of 25, orp

25, is 5 because 52 = 25. Below are a few more examples.

Example 1.3.12:

p
16 = 4 (Square root of 16 equals 4)

3p
8 = 2 (Cube root of 8 equals 2)

4p
81 = 3 (4th root of 81 equals 3)

5p
32 = 2 (5th root of 32 equals 2)

Most calculators have two buttons for
defining roots of a number. One is
the square root and is typically identi-
fied with the radical symbol while the
other is for defining the nth root, and is
typically identified with a symbol that
looks like �

p . There is one advanced
calculator,TI-89, that doesn’t have an
nth root button, and in those cases the
user would have to convert the root to
exponential form which is property 8 in
the table of Properties of Exponents.

Since there are no two negative numbers that when multiplied together give a
negative, such as (−a)(−a), then it is not possible to take the square root, or any
even root, of a negative number with a result of real number. However, since
(−a)(−a)(−a) = −(a)3 such as (−2)(−2)(−2) = −8, then we can take the cube
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root, or any odd root, of an odd number.

Example 1.3.13:

3p−8 =−2 since (−2)3 =−8
5p−243 =−3 since (−3)5 =−243

Caution:
Note that −a2 6= (−a)2. Recall the third
exponential property (ab)n = an · bn .
Since −a can be rewritten as (−1)(a),
then −a2 = (−1)(a)2 = −a2; however,
(−a)2 = (−a)(−a) = a2. This applies to
any even exponent.

Properties of Roots

1. npab = n
p

a · npb

2. n

√
a

b
=

n
p

a
npb

3. ( n
p

a)
n = b

4. n
p

a = a
1
n

5.
np

am = a
m
n

Example 1.3.14: – Apply property 1. to simplify the radical expression.

p
50 =p

25 ·2

=p
25 ·p2

= 5
p

2
p

2 is an irrational number, so we leave it expressed this way for now.

Example 1.3.15: – Apply property 2. to simplify the radical expression.

3

√
27

8
=

3p27
3p8

= 3

2

Example 1.3.16: – Apply property 3. to simplify the radical expression.

(
4p

7
)4 = 7

Example 1.3.17: – Apply property 4. to simplify the radical expression.

3p
8 = 8

1
3

= 2
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Example 1.3.18: – Apply property 5. to simplify the radical expression.

3
√

82 = 8
2
3

=
(
8

1
3

)2
use exponential property amn = (an)

m

= 22 since 8
1
3 = 2

= 4

More often than not, you will use a calculator to perform most calculations.
However, for the next example we’ll simplify the expression without the use of
a calculator so that we can exercise different properties of exponents. In this
section, most homework problems will specify whether or not to use a calcu-
lator. It’s highly recommended that you follow directions as the exercises are
intended to give you practice on manipulating expressions through the use of
algebraic properties and exponential properties. After all, a calculator can only
calculate numeric expressions, and you will encounter many expressions that
are alphanumeric. Alphanumeric consists of letters (variables) and numbers.

Example 1.3.19:

Use the properties for both exponents and roots to simplify the following:

3

√
27(.008)2

.027

Solution:

3

√
27(.008)2

.027
= 3

√√√√33
( 8

1000

)2

27
1000

= 3

√√√√√33
(

23

103

)2

33

103

= 3

√√√√√33
(( 2

10

)3
)2

( 3
10

)3 = 3

√√√√√33
(( 1

5

)2
)3

( 3
10

)3

= 3

√√√√√(
3
( 1

5

)2

3
10

)3

= 3
( 1

5

)2

3
10

=
3

25
3

10

= 10(3)

25(3)

= 2

5
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1.4 Significant Digits and Rounding

1.4.1 Significant Digits

This section is primarily focused on approximate numbers; however, this im-
plies there are exact numbers . An exact number results from either a defi-
nition, or from counting. For example, if we count the number of desks in a
classroom, then there are an exact number of desks in the room. An approxi-
mate number is the result of a measurement. For example, if we measure the
height of a tree, then there is no way to measure the exact height rather we have
to settle for an approximation that is based upon how precise we want the mea-
surement. The following are a few more examples of approximate versus exact
numbers.

Example 1.4.1:

Exact:
1. The number of Skittles in a bag.

2. The number of eggs in a dozen.

3. The number of people at a football
game

4. The number of grains of sand on the
planet.

Approximate:
a. The distance across the United States.

b. The number of gallons of water in a
specific swimming pool.

c. The weight of a specific individual
person.

d. The height of the ceiling in the room
you’re standing in.

You will never find a measurement that will give you an exact number. All mea-
surements are appoximate regardless of how sophisticated the measuring tool
is. For example, If we measure the diameter of a golf ball with an analog set of
dial calipers we would fine one answer. On the other hand, we would expect to
find the diameter of the ball more precisely with a digital set. Regardless of the
limitiation of the tools we use, there always exists a higher level of precision,
and for this reason we can never know the exact diameter of the golf ball, or
anything else we choose to measure.

Precision and Accuracy

• The precision of a number is indicated by the position of the last
significant digit with respect to the decimal point.

• Accuracy refers to the number of siginificant digits.
Caution:
Not all decimal values indicate a mea-
surement. For instance, 0.5 does not
have to indicate a measurment, thus
thought of as an approximate number.
For example, 0.5 times the number of
students in a class would indicate ex-
actly half of the students in a class.

Both precision and accuracy rely on the concept of significant digits , so the
following table outlines a few rules for determining if a digit is considered sig-
nificant.
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Rules for Determining Significant Digits

1. Any non-zero digit is significant.
2. All zeros between two nonzero digits are significant.
3. All zeros to the right of both the decimal point and the last

nonzero digit are significant.
4. All leading zeros are not significant.
5. If a decimal is not present, then the following zeros after the last

non-zero digit are not significant.

The following are examples of each of the rules just listed:

Example 1.4.2: – Examples for Rule 1.

All numbers are non-zero, thus are significant.

1.618 4 significant digits

9 1 significant digit

2.718281828 10 significant digits

Example 1.4.3: – Examples for Rule 2.

All zeros between two non-zero digits are significant

101 3 significant digits

0.120034 6 significant digits. The leading
zero in front of the decimal is not
significant.

3001. 4 significant digits

Example 1.4.4: – Examples for Rule 3.

All zeros to the right of both the decimal point and the last non-zero digit
are significant.

3.12000 6 significant digits

5.00 3 significant digits. The two zeros
at the end are defining the
precision. If 5 was exact, then the
two zeros are not significant, but
that would have to be stated
otherwise we assume not exact.
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Figure 1.9: Analog Dial Caliper

Example 1.4.5: – Examples for Rule 4.

All leading zeros are not significant.

0.9 One significant digit

00.45 two significant digits

0.00078 two significant digits. The zeros are
only used as a place holder for the
decimal

Example 1.4.6: – Examples for Rule 5.

If a decimal is not present, then the following zeros after the last non-zero
digit are not significant.

2000. 4 significant digits

2000 1 significant digit. Below is an
explanation of the differences in
greater detail

Discussion:
Lets take a closer look at the last example. The last example states that 2000 only
has one significant digit while 2000. has four significant digits, so what is the
difference? 2000 has only one significant digit, the non-zero digit of 2, because
the measurement is stated to be accurate to the nearest thousand because the 2
is in the thousands place. However, the number 2000. with the decimal present
at the end is defining the measurement to be accurate to the nearest ones place,
thus making all four digits significant. To avoid this confusion, some texts will
define a zero to be significant after a whole number only if has either a tilde (∼),
or a bar (−) over the last significant digit. Property 2. says that all zero’s between
two significant digits are also significant, thus if we define 2000. as 2000, then
they would both be defing a number that’s accurate to the ones place with four
significant digits.Note: Significant figures are only rele-

vant to numbers that are the result of
a measurement. For example, a non-
terminating decimal thats the result of
a fraction such as 41

11 = 3.727272 does
not have infinitly many significant dig-
its.

A fair assumption when dealing with significant figures is that they represent
the precision of the tool used during measuring. Most dial calipers, as shown
in figure 1.9 (digital or analog), can measure with a precision of up to a thou-
sandth of an inch, or 25 hundreths (.025) of a millimeter, so if we come across a
measurement of 0.120 inches then we’d know that the tool used had a precision
of a thousandth of an inch. On the other hand, if the measured value was 0.12
then we would assume that the tool used had a precision of hundredths of an
inch.

1.4.2 Rounding Numbers

When working with approximate numbers, we have to round results often. Some-
times we need to round to the appropriate number of significant digits, and
other times we have to round to the appropriate precision. In either of these
cases, once we’ve located the last digit of the number to be rounded, say a, we
look at the next digit to the right and if it has a value of five or greater then we
round our previous digit we labeled a up to the next value. If the next digit was
less than five, then we do nothing to a.
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Example 1.4.7:

Round 3.1415927... to the ten thousandths place.

Solution:
Since the 5 is at the ten thousandths place (3.1415927), then we look at
the next digit to the right of 5 (3.1415927) which is 9. Since 9 ≥ 5, then we
round our 5 up to the next value which is 6. Our answer is 3.1416

When rounding to a certain number of significant digits, say n. We begin from
the left and count the significant digits until we reach the desired number n.

Example 1.4.8:

Round 37.874606, 0.0032764, 97,134.4, and 58.00999 to 4 significant digits
(s.d.), 3 s.d., 2 s.d., and 1 s.d.

Solution:

Number 4 s.d . 3 s.d . 2 s.d . 1 s.d .

37.874606 37.87 37.9 38 40

0.0032764 0.003276 0.00328 0.0033 0.003

97,134.4 97,130 97,100 97,000 100,000

58.00999 58.01 58.0 58 60

When rounding to the appropriate precision it is very much the same as when
asked to round to a certain decimal place. Instead of being asked to round to
say the third, or second decimal place, we would refer to those places by their
respective place value names such as the thousandths place, or the hundredths
place.

Example 1.4.9:

Round 37.874606, 0.0032764, 97,134.4, and 58.00999 to the tens, ones, hun-
dredths, thousandths, and tenthousandths places.

Number tens ones hudredths thousandths tenthousandths

37.874606 40 38 37.87 37.875 37.8746

0.0032764 0 0 0.0 0.003 0.0033

97,134.4 97,130 97,134 97,134.40 97,134.400 97,134.4000

58.00999 60 58 58.01 58.010 58.0100

1.4.3 Combining Approximate Numbers

Adding and Subtracting Approximate Numbers

Calculators have no way of determining whether a non-zero digit is significant,
so a calculator will not be able to disinquish between 0.12 and 0.12000. It will be
up to you to determine the correct place to round your result unless otherwise
specified.

When adding or subtracting approximate numbers, the result can only be as
precise as the least precise number. We do not round all our approximate num-
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bers before combining them by any operation (+,−,×,÷) , rather we round the
final result to the least precise number when adding or subtracting. The pro-
cess is a little different when multiplying and dividing.

Example 1.4.10:

Find the sum of 12.3 and 3.056 where both are approximate numbers and
round your result to the appropriate precision.

Solution:

+ 1 2.3
3.0 5 6

1 5.3 5 6

Since our least precise number is at the tenths place, our result must be
rounded to the tenths place as well, thus our result is 15.4

Adding too many numbers by hand becomes tedious, and relying on a calcu-
lator to perform those calculations is often preferable. For the purpose of this
book I will illustrate all calculations using the HP Prime calculator; however,
it is not necessary for anyone to go out and purchase one of these calculators.
Though the HP Prime is loaded with features, I will only make use of features
that are standard on most scientific calculators. The only reason I’m using the
HP Prime for this text is because of the availablity of the emulator and its cost
(free). At the time of this writing, the emulator for the HP Prime can be found
at:
http://www.hp-prime.de/en/category/13-emulator.

Note: The specific buttons and their
sequences used on the calculator will
not be shown since both may differ de-
pending on the calculator being used.

Example 1.4.11:

Find the sum of the following approximate numbers and round the result
to the appropriate precision: 3.76, 2.897, 4.0025, 2.669, 3.158, 4.0028

Solution:
While we could certainly add these few numbers by hand; however, the
use of a calculator will save us the tedious task.

Since the least precise number (3.76) is approximated to the hundredths
place, we must round our result to the hundredths place as well. Our final
result is 20.49.

Multiplying and Dividing Approximate Numbers

When multiplying or dividing approximate numbers we must round our result
to the least accurate number (least number of of significant digits). The reason
for this is that the error becomes greater with respect to the exact value. For ex-
ample, if a manufacturer produces a bolt or screw with a length that is designed

http://www.hp-prime.de/en/category/13-emulator
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to be 3/4 inches, the reality is that the bolt will never be exactly 3/4 inches. If
the bolts produced are too long or too short with respect to the exact length
of 3/4 inches then those bolts would be rejected. So, error is important and is
discussed later in this section.

Example 1.4.12:

Calculate the area of the rectangle, and round the result to the appropriate
number of significant digits.

4.19

3.104

Solution:
The area of a rectangle is calculated by multiplying the length, l, by the
width, w. It does not matter which you choose for the length or width, so

3.1 0 4
4.1 9

2 7 9 3 6
3 1 0 4

1 2 4 1 6
1 3.0 0 5 7 6

×

Since the least accurate number, 4.19, has three significant digits, we must
round our result to 3 significant digits as well. To do this we start from the
left and work our way to the right until we have 3 significant digits. Our
final answer is 13.0.

Caution:
Remember to never round intermedi-
ate steps to the least precise number
or least accurate number until all arith-
metic has been performed.

1.4.4 Understanding Error

The concept of error is important. In many cases, if the error in manufacturing
an item is too large, then the item will be deemed defective and must be dis-
carded, or recycled. Depending on the item being manufactured, the error may
or may not be too strict; however, regardless of the strictness of the error the
topic is important enough to know. Many students have already been exposed
to the concept of error already, but are used to referring to it as a tolerance.

It is not possible to measure an item and determine the exact value, rather any
measurement will only be an approximation. In order to determine the error of
a measurement, we have to know the exact measurement. This exact number
is only theoretical, and we use this to determine how far off the measurement
is from the theoretical exact value, or just exact value.

There are three types of error. The first is the absolute error , and is defined as
the approximated value minus the exact value. The absolute error can be either
positive or negative depending whether the true value is greater or less than the
approximated value.

The second type of error is called the relative error , where it is defined to be
the ratio of the absolute error to the exact value. The third type of error is called
percent error , and is the result of multiplying the relative error by 100 to give
the percentage of the difference of the approximated value is to the exact value.
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Types of Error

1. Absolute Error = Measured Value - Exact Value

2. Relative Error =
Measured Value - Exact Value

Exact Value

3. Percent Error = Relative Error · 100%

Example 1.4.13:

A manufacturer has chosen a random beverage can from a lot of 1,000.
The thickness of the can has been measured to be 39µm, where the exact
value is supposed to be 50µm. If the percent error is greater than ±17%,
then the entire lot of 1,000 cans must be recycled. Determine the correct
course of action for this lot of 1,000 cans.

Solution:

Absolute Error = 39−50

=−11

Relative Error = −11

50
=−0.22

Percent Error =−0.22 ·100%

=−22%

Since −22% is out of the error range, then the entire lot of 1,000 cans must
be recycled.

Units measured in micrometers are
identified by µm. One micrometer, or
1µm, is 1 millionth of a meter,
or 1×10−6 meters.

Example 1.4.14:

In an attempt to expedite the process of determining which cans need to
be recycled and those that don’t in reference to example 1.4.13, what is the
minimum and maximum thickness that a can must be to ensure the error
is not smaller or larger than the required 17% ?

Solution:

To begin, we setup an expression using the appropriate formula. The for-
mula that we need is either percent error, or relative error. Once set up, we
should have only one variable that we must solve for which we’ll denote as
x.
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Relative Error = Measured Value - Exact Value

Exact Value
Write down the correct
formula to use

0.17 = x −50

50
Substitute known values.
Since all units are the same, it
is not necessary to write them
down while solving.

50(0.17) = x −50 Multiply both sides of the
equation by 50.

8.5+50 = x Add 50 to both sides of the
equation.

x = 58.5µm

If the thickness of the can is greater than 58.5µm then the lot must be
recycled. Similarly, we can find the lower limit by setting the relative error
equal to -0.17 and solving again. If done following the same procedure,
you will find that the lower bound is 41.5µm.

1.4.5 Setting Precision on the Calculator

Though the examples in this book are not too tedious, certain calculations where
there are a lot of values that must by added can be. For this reason it’s help-
ful to set the precision in the calculator. By default, most calculators will dis-
play around ten digits; and, more ore often than not, this is more than what’s
needed. You can change the number of decimal places by use of the mode but-
ton on most calculators. Other calculators may be different, and in those in-
stances you should refer to the operators manual. For instance, to set the num-
ber of decimals, also known as the floating point, on the HP Prime calculator

used in this text, you must press
�� ��shift , and then the home button to access the

settings. On the first page in the settings menu under Number Format, there is
a list of available options for displaying numbers as shown in figure 1.10. To set
the number of visible decimal values choose the option labeled Floating. Once
selected, a new dropdown menu appears beside the number format setting al-
lowing you to choose which value you want.

(a) First (b) Second

Figure 1.10: HP Prime Settings
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1.5 Scientific and Engineering Notation

Both scientific notation, and engineering notation allow us to deal with very
large and very small numbers in a less cumbersome manner. For example, as-
tronomers have to deal with numbers that get incredibly large such as the dis-
tance to the sun which is about 92,960,000 miles, or 149,600,000 kilometers.
The mass of the sun is 1,988,435,000,000,000,000,000,000,000,000 kg. Other
than the fact that dealing with numbers such as these are very cumbersome, at-
tempting to use such large numbers in decimal form invites plenty of room for
mistakes to occur. Another advantage to using either scientific or engineering
notation is that they both allow calculators to display large and small numbers
on a screen with limited space.In astronomy, it is commton to see dis-

tances measured in astronomical units,
au, where 1au is the distance from the
earth to the sun.

1.5.1 Scientific Notation

Scientific notation is of the form a ×10n , where a is the first non-zero digit in
the number and n is an integer. If the number is greater than 1, or less than -1,
then n will represent the number of places that the decimal had to move to be
placed behind the first non-zero digit. For example, the first non-zero digit in
the value for the mass of the sun is 1, and the decimal is behind the last digit of
zero, thus the decimal would have to be moved 30 places to the left. So, in sci-
entific notation the mass of the sun is 1.988435×1030. If the decimal has to be
moved to the right then n will be negative. This occurs anytime the value of the
number is a fraction, or greater than -1, but less than 1. For example, the light-
est element in the periodic table is hydrogen which weighs .0000899 grams per
cubic centimeter. In scientific notation hydrogen weighs 8.99×10−5g /cm3 The
following are a couple more example numbers rewritten in scientific notation.If a number is less than 10, such as

numbers 1 - 9, it isn’t necessary to
rewrite it in scientific notation. For in-
stance, 9 in scientific notation would
be 9 × 100, and since 100 = 1, this is
just another way of stating 9×1. How-
ever, when combining numbers in sci-
entific notation, you may find it helpful
to write numbers from 1 - 9 in scientific
notation anyway to avoid making mis-
takes when applying the properties of
exponents.

Example 1.5.1:

149,600,000 km = 1.496×108km , .000000267 = 2.67×10-7

8 decimal places 7 decimal places

All significant digits should be included when rewriting a number in scientific
notation as shown in example 1.5.2, and any zeros present in scientific notation
should be considered significant.

Example 1.5.2:

0.000350 = 3.50×10−4 (1.1)

34200000 = 3.4200×107 (1.2)

Recall that zeros with a line over them,
or a tilde are labelled significant. These
rules can be reviewed in section 1.1. We refer to a number that has not been compressed, as in scientific notation,

as the ordinary notation of a number. Reversing the process is all that needs to
be done to put a number in ordinary form.
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1.5.2 Engineering Notation

Engineering notation is similar to scientific notation except that the exponent,
n, in the expression a × 10n must be divisible by 3, and a is a number that is
greater than or equal 1 but less than 1000, or 1 ≤ a < 1000 . The main mo-
tivation for using engineering notation is because it is used to express quan-
tities in terms of the International System of Units, or SI. For example, we’ve
just seen the micro meter used in example 1.4.13, where micro references mil-
lionths; thus 3µm = 0.000003m, or in engineering notation we have 3×10−6m.
Notice that exponent, -6, is divisible by 3. Engineering notation is commtonly
used to represent 16 of the 20 SI prefixes such as kilo, mega, and nano to name
just a few. Those 16 out of 20 prefixes are all multiples of 1000=1×103. This is
the reason for having the exponent of 10 divisible by 3. Since SI units are not
the focus of this section, we will come back to them in a later chapter.

Example 1.5.3:

Rewrite 5µm in engineering notation.

Solution:
Since 5µm is equal to 0.000005m then in engineering notation this would
be 5×10−6m.

Notice that 5 is greater than 1 and less than 999; and the exponent is a
multiple of 3.

Example 1.5.4:

Express the following in engineering notation:

1. 3,141,500

2. 1.618

3. 270,000,000,000

4. 0.000 000 09

Solution:

1. 3,141,500 = 3.1415×106

2. 1.618 = 1.618×100

3. 270,000,000,000 = 270×109

4. 0.000 000 09 = 90×10−9
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1.5.3 Scientific and Engineering Notation

on Calculators

Most scientific calculators today have the ability to display results in either sci-
entific notation, or engineering notation; however, some calculators may differ
on how the answer is displayed. There are basically two methods that calcula-
tors use to identify the ×10n part. One method is to display the number exactly
the same way we’ve shown here except the ×10n part is written smaller. For ex-
ample, 3.1415×106 might be displayed on the calculator as 3.1415×10

06. The
other method, much more commton, lets the letter E represent ×10n . For ex-
ample, the output on the screen would look similar to 3.1415 E 6. Each calulator
will differ on how to set the mode, so you will likely have to read the documen-
tation that came with your calculator to see how this is done. Usually scientific
notation is abbreviated as SCI and engineering notation as ENG.

Once you’ve set the calculator to display in either mode, you can use the cal-
culator to convert numbers to the mode you’re in. This may prove helpful until
you’re proficient enough to make the conversions on your own. Eventually, you
will recognize 5 E 6 as synonymous as having it spelled out as 5 million.To change the display modes on the HP

Prime we press the shift key then the
home button to access the home set-
tings. On the first page under Number
Format we can change the mode to en-
gineering as shown below.

Figure 1.11: Home Settings

Example 1.5.5:

Use your calculator to rewrite 27,000,000,000 in both engineering, and sci-
entific notation.

Solution: We will begin by setting the calculator mode to engineering no-
tation. Once this is done we only need to input 27,000,000,000 in the cal-
culator and hit Enter or the equal button. The output for engineering and
scientific are:

Engineering : 27 E 9

Scientific : 2.7 E 10

Depending on how many many fixed digits are set in the calculator, your
answers could look similar to 27.0000000 E 9.

To enter numbers in either mode, we use the button that either looks like
�� ��EE ,

or
�� ��EEX to denote ×10 . For example, to enter 0.0000000735 in engineering no-

tation we would enter the following sequence of buttons on the calculator:

73.5
�� ��EEX

�� ��+/- 9

To assign a number to be negative on
the calculator, we use the buttons that
either look like

�� ��+/- , or more com-

monly the button that appears like
�� ��(-) .

Try this on your own to make sure that the output on your calculator is what’s
excpected.

1.5.4 Products and Quotients of Scientific

or Engineering Notation

When working with very large, or very small numbers, the calculations can be
made a little easier in scientific notation.
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Example 1.5.6:

Perform the following operation in scientific notation.

64,000,000,000,000×23,000,000

Solution:
We begin by rewriting the expression in scientific notation. Once that’s
complete, we take advantage of the rules for exponents to simplify the ex-
pression.

64,000,000,000,000×23,000,000 = (6.4×1013)(2.3×107)

= 6.4×2.3×1013 ×107 reorder since everything is
multiplied

= 14.72× (1013 ×107) multiply 6.4(2.3) to get 14.72

= 14.72×1013+7 1013 ×107 = 1013+7

= 14.72×1020 14.72 is not in engineering
notation

= (1.472×101)×1020 convert 14.72 into Scientific
notation

= 1.472×1021 101 ×1020 = 101+20

Recall from section 1.3 that
an

am = an−m . Use this property in conjuntion with

others to perform the operations in the following example.

Example 1.5.7:

Perform the following operations in engineering notation. Round result to
three decimal places.

0.000045 ·21,000,000

2.718000

Solution: To begin, rewrite all numbers in engineering notation, then use
the properties of exponents to combine like bases. In the event that we
have to perform any intermediate rounding, which is rounding that occurs
before we get to the final answer, we will round to two more decimal places
than what’s required. This is good practice to help avoid compounding the
error too much before reaching the final result.
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0.000045 ·21,000,000

2.718000
= (45×10−6)(21×106)

(2.718×100)
note: the parenthesis here are
not necessary, but help
us identify each number

= 45×21

2.718
× 10−6 ·106

100 reorder in terms of like
numbers

= 347.68212×10−6+6−0 perform the arithmetic and
apply properties of exponents.

= 347.682 not necessary to put
347.682×100 since 100 = 1,
though not incorrect if you do.

It becomes tedious to perform larger calcualtions by hand. If your calculator
is in the desired mode, such as engineering, then it’s not necessary to enter
numbers in that manner; rather the main benefit to doing so cuts down on the
number of key strokes required to enter the numbers.Note: Arrow keys such as

�� ��⇒ ,
�� ��⇐

,
�� ��⇑ , and

�� ��⇓ reference the direction
keys on your calculator. Depending on
the calculator you’re using, it is some-
times necessary to use these arrow keys
to move the cursor in or out of the cor-
rect position.

Figure 1.12: Home Settings

Example 1.5.8:

Perform all arithmetic of the follwing using a scientific calculator. The re-
sult should be in engineering notation.

0.000 001 7

0.000 097 3
·12,000

Solution:
As mentioned above, it is not necessary to enter the values in the calcu-
lator in engineering notation, but it will cut down on the keystrokes re-
quired. For this reason, and to avoid entering all those zeros without a
mistake, we’ll convert each number to engineering notation first before
entering them in the calculator.

1.7 E −6

97.3 E −6
· (12 E 3)

Now that we have our values converted to the appropriate notation, the
following are the keystrokes required to enter in the calculator. Keep in
mind that since everything is being multiplied or divided (nothing added
or subtracted, or any other operations), it is not necessary to define the
numerator and the denominator in parenthesis.

1.7
�� ��EEX

�� ��+/- 6
�� ��÷ 97.3

�� ��EEX
�� ��+/- 6

�� ��⇒ �� ��× 12
�� ��EEX 3

If entered correctly, the result should appear like the window in figure 1.12:
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Figure 1.13: Stars

Example 1.5.9:

According to npr.org, there are multiple stars in the universe for every
grain of sand on the entire earth. The number of grains of sand on earth
has been roughly approximatted to be 7.5×1018 grains. Using this approx-
iamtion of grains of sand, how many stars are there in the universe if we
assume that there are at least 2 stars for every grain of sand? Leave the
result in engineering notation.

Solution: We need to multiply 7.5×1018 times 2 since there are 2 stars per
grain of sand. Without using a calculator we would convert the number 2
to engineering notation first before multiplying.

(7.5×1018)(2×100) = 7.5(2)×1018+0 rewrite the number 2 in
engineering notation, and
reorder

= 15×1018

Based upon this huge assumption, there are at least 15×1018 stars in the
universe.

Example 1.5.10:

Light travels at approximately 300 000 km/s. How long in minutes does the
suns light take to travel to earth if the earth is 150 000 000 km away?

Solution:

First, we convert each value to engineering notation:

300,000km/s = 300×103km/s

150,000,000km = 150×106km

To find either speed (s), time (t ), or distance (d) we generally use the for-
mula d = s · t , or distance is equal to speed times time and solve for the
variable we need. Since we want to find the time (how long it takes) we

rewrite the equation as t = d

s
.

d

s
= 150×106 km

300×103 km/s
= 150

300
× 106

103 × km · s

km

km
km

s

= km

1

s

km
= km · s

km

= 1

2
×106−3 s

= 500 s

Now that we know how many seconds it takes, we just need to convert
500 s into minutes by dividing by 60 seconds.

500 s

60 s
≈ 8.33m
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1.6 Addition and Subtraction of Expressions

1.6.1 Variables

A variable is any symbol used to represent an unknown quantity. Usually we
use letters such as n, x, or b. Often we find ourselves solving for one, or more,
of these variables, but that is not the focus of this section.

There are certain letters that have been designated for a specific use that we
don’t consider to be a variable, rather we call them constants . For example,
the greek letter π is assigned to represent the ratio of the the circumference of a
circle to the diamter which is approximately 3.1415. Another example would be
the letter e = 2.71828. There are several letters assigned specific values that we
avoid reassigning values to. On occasion, some algebraic expressions require
so many variables that it makes it tedious to keep up with, so we introduce the
concept of subscripts . A subscript is a small number, or letter, written to the
bottom right of a variable such as a1, a2, and a3. By introdcuing the subscript,
we have effectively increased, dramatically, the number of variables that are
available to us to use.

More often than not, when learning a new algorithm, or equation, it’s common
to make use of variables to introduce these new algorithms because it is the
most general expression we can get that applies to all values unless otherwise
stated. For example,

p
n ,n ≥ 0 means that n can be any real number as long as

n is greater than or equal to zero. In example 1.6.1 in the margin, the distribu-
tive law is illustrated where a, b, and c can be any real number.

Note: The subscript is a counter

a1 = the first a

a2 = the second a

...

it is not a math operation such a squar-
ing or cubing.

Example 1.6.1:

a (b + c) = a ×b +a × c

1.6.2 Algebraic Expressions

The term algebraic expression is used to describe any combination of variables
and/or constants just as we saw in example 1.6.1. Below are some other exam-
ples of algebraic examples.

Example 1.6.2:

a2 +b2 − c2 (1.3)

ax2 +bx + c (1.4)

−b ±
p

b2 −4ac

2a
(1.5)

1.6.3 Factors of Algebraic Expressions

Factors of an algebraic expression are any terms or numbers that can be mul-
tiplied together to get the original expression. For example, 5x2 is a term and
5 · x · x = 5x2 so x is a factor of 5x2 and 5 is a factor of 5x2. Another way to think
of a factor is anything that divides the expression evenly. For instance, 7 is a

factor of 21 since
21

7
= 3.

Factors of an algebraic expression should not be confused with terms of the
expression. Every algrabric expression has at least one factor namely itself. For
instance, the expression a2 has one term, but has two factors: a, and a2.
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3a(x2 −4)+5b(x2 +4 is an expression with terms 3a(x2 −4) and 5b(x2 +4) and
factors of 3, a, (x2 −4), 5, b, and (x2 +4) as well as the products of these factors.
Since (x2 −4) can be factored into (x −2)(x +2), then (x −2) and (x +2) are also
factors. (x2 +4) can not be factored with any real results.

1.6.4 Monomials and Multinomials

An algebraic section with only one term is called monomial . An algebraic ex-
pression with two terms is called binomial , and an expression with three terms
is called trinomial. Any algebraic expression that exceeds one term is described
as multinomial . Though binomials and trinomials are also multinomials, we
typically refer to multinomials as algebraic expressions that exceed three terms,
but stating a binomial or trinomial as multinomial is not wrong.

Example 1.6.3:

1. 3x2 is called monomial since it only has one term

2. b2 −4ac is called binomial since it has two terms: b2, and −4ac

3. ax2 +bx + c is trinomial.

4. x3 + 3x2 y + 3x y2 + y3 is multinomial since it has more than three
terms.

A polynomial is an algebraic expression with only nonnegative integer expo-
nents. The degree of a polynomial is defined by the largest exponent of all the
terms of the expression. For example, 2x +4x2 +7 is a polynomial of degree 7
since the largest exponent is 2 and all the exponents are nonnegative integers.
Below are some more examples of exponents and their degree:

Example 1.6.4:

1. 5x2 is a polynomial of degree 2

2. 7x6 −1 is a polynomial of degree 6

3. 3x2 −2x7 +12x4 is a polynomial of degree 7

A numerical coefficient , or just coefficient , is the number that the term is
multiplied by. Notice in part 1. of example 1.6.4 above that the term is being
multiplied by 5, thus the coefficient is 5. The coefficient in part 2. is 2, and in
part 3 we have several terms with coefficients where the coefficient for 3x2 is 3,
the coefficient of the leading term −2x7 is -2, and finally the coefficient of 12x4

is 12.

1.6.5 Like Terms

Some terms in an algebraic expression have the same variables and powers
that possibly differ only by the coefficient which we call like terms . For in-
stance, 2a +3a +4b has two like terms: 2a and 3a. Since these are like terms
we can combine them by adding their coefficients 2a +3a = (2+3)a = 5a. It’s
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important to note that only the variables and exponents matter when identify-
ing like terms. For example, 9x3 y z and −12x3 y z are like terms because the only
thing that differs between them is the numerical coefficient. On the other hand,
x3 y2z and x2 y3z are not like terms because the exponents on the variables are
different.

You will encounter many algebraic expressions throughout this book that ap-
pear at first glance to be daunting; however, identifying like terms and com-
bining them will help transform the expression into what is called a simplified
expression. A simplified expression will only contain terms that have no longer
have similar terms.

1.6.6 Combining Multinomials

In order to combine monomials, we only need to either add or subtract the
coefficients of similar terms.

Example 1.6.5:

(2x2 −x y +9y2)+ (5x2 −7x y −7y2)

= (2x2 +5x2)+ (−x y −7x y)+ (9y2 −7y2) Reorder similar, or like, terms

= 7x2 −8x y +2y2 Combine like terms until
there are no similar terms left

Example 1.6.6:

(3a +2ab −3c)− (4ab +7c −a)

= (3a − (−a))+ (2ab −4ab)+ (−3c −7c) Reorder like terms, but don’t
forget to distribute the
negative sign in front of the
second grouping in
parenthesis

= 4a −2ab −10c

There are several ways of grouping terms together. The most common method
is to make use of parenthesis, ( ), to group terms; however, some texts will use
brackets, { }, braces, [ ], along with parenthesis. In this text, we will use nested
parentheses as shown in the next example.
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Example 1.6.7:

5− (2+3a(c +b))−4c(a −b)

= 5− (2+3ac +3ab)−4ac +4bc Begin with the innermost
parentheses first and work
outward

= 5−2−3ac −3ab −4ac +4bc Distribute the negative
throughout the last set of
parentheses only after all
inner parentheses have been
simplified

= 3−3ab −7ac +4bc Combine like terms. The
order in the final result does
not matter.
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1.7 Multiplication of Algebraic Expressions

1.7.1 Multiplying Monomials

When multiplying monomials we begin by multiplying the coefficients. After
the coefficients have been multiplied we can multiply the remaining factors of
the monomials following the properties of exponents from section ??.

Example 1.7.1:

1) (2x y)(4x2 y) = 8x1+2 y1+1 = 8x3 y2

2) (−5a3b2)(−3a11b5) = (−5 · (−3))a3+11b2+5 = 15a14b7

3) (4x2 y z3)(−3x y5z6) =−12x2+1 y1+5z3+6 =−12x3 y6z9

To multiply a monomial with a multinomial you need to make use of the dis-
tributive property. Recall from section 1.2 that the distributive property takes
the value outside the parenthesis is multiplied throughout all terms inside the
parenthesis.

Below is an example of the distributive
property applied with multiple terms
inside the parenthesis.

a (b + c +d) = ab +ac +ad

Example 1.7.2:

−3x2 y3(2x −5y2 +3x y) =−6x2+1 y3+0 +15x2+0 y3+2 −9x2+1 y3+1

=−6x3 y3 +15x2 y5 −9x3 y4 Notice that there are no like
terms, so this is as far as we go

1.7.2 Multiplying Multinomials

When multiplying two multinomials together, we need to multiply each term
in the first multinomial by each term in the second multinomial.

Example 1.7.3:

Expand the following by multiplying the two multinomials:

(a +b + c)(x + y + z)

To begin, we multiply the first term in the first multinomial, a, by every
term in the second multinomial.

(a +b + c)(x + y + z) = ax +ay +az + (b + c)(x + y + z)

Next, take the second term in the first multinomial, b, and multiply it by
every term in the second monomial.

ax +ay +az + (b+c)(x + y + z) = ax +ay +az +bx +by +bz +c(x + y + z)
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Lastly, we distribute c throughout the second multinomial to get our re-
sult.

ax +ay +az +bx +by +bz + cx + c y + cz

Notice in example 1.7.3 that there were
a total of 9 terms in the result. This will
always happen; however, there are in-
stances where some terms are similiar
and can be combined.

Example 1.7.4:

Multiply the following two multinomials together:

(2x3 +5−6y2)(−3x +2y −7z4)

Solution:

We first begin by multiplying 2x3 by every term in the second multinomial:

(2x3+5−6y2)(−3x+2y−7z4) =−6x4+4x3 y−14x3z4+(5−6y2)(−3x+2y−7z4)

Next, we multiply 5 by every term in the second multinomial:

−6x4 +4x3 y −14x3z4 + (5−6y2)(−3x +2y −7z4)

=−6x4 +4x3 y −14x3z4 −15x +10y −35z4 −6y2(−3x +2y −7z4)

Lastly, we distribute −6y2 throughout the multinomial. Notice that the
minus sign goes with the term −6y2.

−6x4 +4x3 y −14x3z4 −15x +10y −35z4 −6y2(−3x +2y −7z4)

=−6x4 +4x3 y −14x3z4 −15x +10y −35z4 +18x y2 −12y3 +42y2z4

In this example, there are no like terms, thus we can not simplify further.
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1.7.3 Difference of Squares

When multiplying two binomials where one term in each is the same, and the
other term in each differ only by a sign then the result will be a difference of
squares as shown below.

(a +b)(a −b) = a2 −ab +ab −b2 = a2 −b2

This special product appears often throughout algebra, and is beneficial to rec-
ognize the difference of squares when you encounter it.

Example 1.7.5:

1) (x +3)(x −3) = x2 −��3x +��3x +9 = x2 −9 9 = 32

2) (2x −5)(2x +5) = 4x2 +��10x −��10x −25 = 4x2 −25 4x2 = (2x)2

Notice in the example above that the two middle terms always cancel out. This
will always occur with the difference of squares.

1.7.4 Squaring Binomials

The square of a binomial is of the form (a+b)2, and the purpose of the exponent
is the same as any other time we square a number; we multiply the binomial by
itself.

(a +b)2 = (a +b)(a +b)

When performing this operation, recall the procedure for multiplying multino-
mials earlier in this section. The procedure is the same, mulitplying every term
in the first polynomial by every term in the second.

(a +b)2 = (a +b)(a +b) = a2 +ab +ba +b2 = a2 +2ab +b2

(a −b)2 = (a −b)(a −b) = a2 −ab −ba +b2 = a2 −2ab +b2

Example 1.7.6:

1) (x +2)2 = (x +2)(x +2) = x2 +2x +2x +4 = x2 +4x +4

2) (3L−4)2 = (3L−4)(3L−4) = 9L2 −12L−12L+16 = 9L2 −24L+16 (3L)2 = 32L2 = 9L2

3) (x +h)2 = (x +h)(x +h) = x2 +xh +xh +h2 = x2 +2xh +h2

4)

(
1

3
− y

)2

=
(

1

3
− y

)(
1

3
− y

)
=

(
1

3

)2

− 1

3
y − 1

3
y + y2 = 1

9
− 2

3
y + y2
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1.8 Division of Algebraic Expressions

We must be careful when writing or rewriting algebraic expressions. Recall that
the division can be represented in several ways such as

1

b
(a), a ÷b,

a

b
, and a/b

all mean the same thing. Caution: Remember that the numera-
tor and the denominator of a fraction
represent grouping symbols,

so a +b/c +d is not the same as
a +b

c +d
;

rather a +b/c +d = ac +b +dc

c
.

There are a couple ways of representing algebraic expressions where one is
what is best described as "in-line" (see below). Care must be taken when writ-
ing algebraic expressions, especially those involving fractions, in-line because
of grouping. Parentheses are used extensively to denote terms grouped to-
gether. The second is commonly known as "display mode" where certain as-
pects of the algebraic expression such as fractions are identified without paren-
theses. Below is an example of both ways.

in-line : (a +b)/(c +d), display mode :
a +b

c +d

Some may argue that there isn’t really a difference; however, due to so many
misinterpretations and mistakes it is important to mention.

1.8.1 Division of Two Monomials

To divide one monomial with another, or in other words to perform the quo-
tient of two monomials, we will make use of the properties of exponents that
was introduced in section 1.3.1. Recall that am

an = am−n . When dividing two
monomials we will simplify each factor of each term with this property.

3x4 y2

6x3 y5 = 3

6
x4−3 y2−5 = 1

2
x y−3

Often results will be asked to be put shown with positive exponents only, thus

we again use the properties of exponents to rewrite 1
2 x y−3 as

x

2y3

Example 1.8.1:

Divide 9x3 y2z−3 by 3x y4z−6 with a result of only positive exponents.

Solution:

Be careful when using the rule
am

an = am−n when there are negative expo-

nents.

(
9x3 y2z−3)÷ (

3x y4z−6)= 9x3 y2z−3

3x y4z−6

= 9

3
x3−1 y2−4z−3−(−6)

= 3x2 y−2z3

= 3x2z3

y2
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Example 1.8.2:

Divide 6a−4b3c−5 by 42a−2b3c with a result of only positive exponents.

(
6a−4b3c−5)÷ (

42a−2b3c
)= 6a−4b3c−5

42a−2b3c

= 6

42
a−4−(−2)b1−1c−5−1

= a−2b0c−6

7

= 1

7a2c6 recall b0 = 1

1.8.2 Dividing Multinomials by a Monomial

Recall that when adding fractions that the denominator must be the same. Once
you’ve found a common denominator, then all there is left to do is add the nu-
merators while the denominator remains the same.
For example, 2

3+ 5
3 = 2+5

3 = 7
3 . The same is true for all fractions, even those where

the numerator and denominator are multinomials or monomials. In addition,
you can also reverse the last step and break up a fraction into the sum of two or
more fractions all with the same denomintor as shown in the margin.

Note: Fractions can be broken up into
the sum of multiple fraction all with
the same denominator:

a +b + c

n
= a

n
+ b

n
+ c

n
To divide a multinomial by a monomial, the expression needs to be broken up
into the sum of multiple fractions as shown in the margin.

Example 1.8.3:

Divide (6x2 y3 +8x3z) by (2x y3z2)

Solution:

(6x2 y3 +8x3z)÷ (2x y3z2) = 6x2 y3 +8x3z

2x y3z2 Notice that the parenthesis in
the numerator and
denominator are no longer
present, but are implied
because a fraction is a
grouping symbol.

= 6x2 y3

2x y3z2 + 8x3z

2x y3z2

= 3x2−1 y3−3z0−2 +4x3−1 y0−3z1−2

= 3xz−2 +4x2 y−3z−1 This is technically the
solution; however, if we want
positive exponents then, we
go one step further.

= 3x

z2 + 4x2

y3z
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Example 1.8.4:

Divide a2 −b2 +4ac + c2 by 3ac. Simplify the result using only postive ex-
ponents.

Solution:

(a2 −b2 +4ac + c2)÷ (3ac) = a2 −b2 +4ac + c2

3ac

= a2

3ac
− b2

3ac
+ 4ac

3ac
+ c2

3ac

= 1

3
a2−1c−1 − b2

3ac
+ 4��ac

3��ac
+ 1

3
a−1c2−1

= a

3c
− b2

3ac
+ 4

3
+ c

3a

Notice in the last example that its easier, or quicker, to cancel the terms out that
are exactly alike as opposed to rewriting the exponent as the difference of the
numerator to the denominator.

1.8.3 Dividing a Multinomial by a Multinomial

When dividing a Multinomial by another multinomial the process is much dif-
ferent dividing by just a monomial. To begin, the instructions are for dividing a
polynomial by another polynomial. Recall that a polynomial is of the form:

an xn +an−1xn−1 +an−2xn−2 · · ·a2x2 +a1x +a0, {a0, · · · , a} ∈R, and n ∈Z

The subscripts and the superscripts in
this definition of a polynomial are not
intended to imply that if a = 5 then
an−1 = 4; rather they are only put there
as a way of saying that the coeffecients
are different, or possibly the same. The
same goes for the exponents except the
terms are written in decreasing order
and are non-negative. Below is an ex-
ample of a polynomial.

3x7 −6x4 +3

Review section 1.6.4 for examples of polynomials.

The process to dividing one polynomial by another is the same as when we per-
formed numerical long division except now we have variables, but the process
is the same. The process is probably best described with an example, so the
following is an example broken down into steps.

Divide −7x2 +6x3 +10x −4 by 3x2 +4−2x

Step 1: Write the dividend and the divisor in decreasing order.

Since the largest exponent in the dividend 3, then that will be the first term then
term with 2 and so on. We have to do the same to the divisor thus we have the
following:

(6x3 −7x2 +x −4)÷ (3x2 −2x +4)

To perform long division, we will rewrite the problem with a division symbol
just as we do with numerical long division.

3x2 −2x +4
∣∣∣ 6x3 −7x2 +x −4
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If there are any missing terms, in this case there are none, then it helps to write
them in any way with a coefficient of zero. The purpose of this is to keep things
nicely ordered, but is not necessary.

Step 2: Divide the leading term in the dividend by the leading term in the di-
visor.

To begin the process of division, we divide the leading (first) term in the divi-

dend , 6x3 −7x2 +x −4, by the leading term in the divisor, 3x2 −2x +4.

6x3

3x2 = 2x

Another way to think of it, which may prove to be faster, is to determine what
needs to be multiplied to 3x2 to get 6x3 ? The result is the same of course , 2x,
but the process may go a bit faster thinking of it this way as you become more
familiar with exponents.

2x

3x2 −2x +4
∣∣∣ 6x3 −7x2 +x −4

Step 3: Mulitply every term of the divisor by the first term of the quotient, and
subtract the result from the dividend.

In this step we multiply the first term of the quotient (2x) by each term in the
divisor, 3x2 −2x +4, and write the result directly beneath the dividend.

2x

3x2 −2x +4
∣∣∣ 6x3 −7x2 +x −4
−6x3 +4x2 −8x

Immediately following, we subtract like terms and write those results down be-
low the bar to give us a new dividend.

2x

3x2 −2x +4
∣∣∣ 6x3 −7x2 +x −4
−6x3 +4x2 −8x

−3x2 −7x −4

Step 4: Repeat steps two and three until the power of the divisor is less than
the new dividend.

2x −1

3x2 −2x +4
∣∣∣ 6x3 −7x2 +x −4
−6x3 +4x2 −8x

−3x2 −7x −4
3x2 −2x +4

−9x
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Step 5: Write the result in the correct form.

The result is is written as the following:

quotient+ last dividend

divisor
⇒ 2x −1+ −9x

3x2 −2x +4

Example 1.8.5:

Divide x3 +x −5 by x +2

Solution:

To begin, notice that the divisor and dividend are already in decreasing
order, so all we have to do is perform steps 1 through 4 till we get to the
end then write the result in the correct form.

x2 −2x +5

x +2
∣∣∣ x3 +x −5
−x3 −2x2

−2x2 +x
2x2 +4x

5x −5
−5x −10

−15

Thus our answer is

x2 −2x +5+ −15

x +2

Example 1.8.6:

Divide x4 +x −5 by x2 +2

Solution:

Again, both the dividend and divisor are already in decreasing order, so
we just need to perform steps 1 through 4 repeatedly until the order of the
new dividend is less than the order of the divisor.

x2 −2

x2 +2
∣∣∣ x4 +x −5
−x4 −2x2

−2x2 +x −5
2x2 +4

x −1

The result should be written as
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x2 −2+ x −1

x2 +2

All of the examples so far have been dividing a polynomial with another poly-
nomial. In the case of dividing a multinomial by another multinomial where
there are more than one variable, then the process is the same except we write
the multinomial in decreasing order regardless of the variable.

Example 1.8.7:

Divide x3 −x y2 +x2 y − y3 by x + y

Solution:

x2 − y2

x + y
∣∣∣ x3 + y x2 − y2x − y3

−x3 − y x2

− y2x − y3

y2x + y3

0

Notice in this case that the remainder is zero, thus our answer is just x2 −
y2. However, since the remainder was zero then this means that the divi-
sor was a factor of the dividend because it divided into it evenly with no
remainder.
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2.1 Lines, Angles, Triangles

It’s important to understand the definitions in math, and in geometry there are
a lot, but we use these terms later throughout this book extensively. Without
the understanding of terms, then your understanding of other definitions that
reference certain terms will be false.

2.1.1 Lines, Rays, and Angles

Figure 2.1: Line AB

A B

Figure 2.2: Ray

A B

Figure 2.3: Parallel Lines

`1
`2

Figure 2.4: Perpendicular Lines

`1

`2

Figure 2.5: Angle

Bside

vertex=A

sid
e

C

α

A line is defined as the infinite straight line drawn between two points, includ-
ing the points, and is denoted as AB or B A. It is common to not illustrate the
point in the graph with a deliberate point such as •, unless emphasis needs to
be put on it or a single point needs to be plotted. Figure 2.1 illustrates a line
between points A and B .
A ray (or half line ) is a portion of a line drawn from a point, say A as shown
in Figure 2.2, and passes through another point, say B . Since a ray will pass
through other points, then any of the other points that the ray passes through
can be used to denote the ray, thus the ray shown in figure 2.2 can be denoted

as
−→
AB .

When two lines, `1 and `2, are drawn so that they never cross then they are
called parallel lines, and are denoted as `1 || `2. When two lines intersect each
other at a 90◦ angle then they are called perpendicular or normal . To de-
note whether two lines, again say `1 and `2, are perpendicular, we would write
`1 ⊥ `2.

2.1.2 Angles

An angle is the amount of rotation of a ray about its vertex. Typically, an angle
is identified with a lowercase Greek letter such as θ as shown in figure 2.5. The
pivot point of rotation is called the vertex .
There are several ways to denote a particular angle within a figure if the angle
isn’t already identified. In figure 2.5 the angle is denoted as the lowercase Greek
letter α; however, there are many instances where angles are not predefined
this way. In figure 2.8b the angle at the vertex can be denoted as any one of the
following: ∠A, ∠C AB , ∠B AC , or θ since it’s the only angle in the figure . In
this book, all angles will be referenced as either ∠A (or any other capital Latin
letter), or a lowercase Greek letter such as θ.

BA

C

Figure 2.6

The following is a list of basic angles. A right angle, 90◦ angle, is always iden-
tified with small square at the vertex. Never assume that an angle is what it
appears unless it is stated. For example, if an angle looks like a 90◦ angle but
does not have the square to identify it as a right angle, then we can’t assume
that it is.
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BA

C

(a) Acute Angle

BA

C

(b) Obtuse Angle

Figure 2.7

(a) Straight Angle

BA

C

(b) Right Angle

Figure 2.8

Supplementary angles occur when the sum of two angles is equal to 180◦. We
would say that the supplement of 30◦ is 150◦ and vice versa. Complementary
angles occur when the sum of two angles equal 90◦. Thus, if we have an angle
of 20◦, then the complement of 20◦ is 70◦ and vice versa.

Figure 2.9: Supplementary Angles

Figure 2.10: Complementary Angles

Example 2.1.1:

What are the complement and supplement of 40◦ ?

Solution:
The complement of 40◦, for now we’ll call it α , is the angle such that the
sum of 40◦ and α equals 90◦.

40◦+α= 90◦

α= 90◦−40◦

= 50◦

Thus, the complement of 40◦ is 50◦.

The supplement of 40◦ is found similiarly except the sum of the two angles
must equal 180◦.

40◦+α= 180◦

α= 180◦−40◦

= 140◦
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Two angles that share a vertex and one side are called adjacent angles as shown
in figure 2.11. When two lines cross at a point, then they will create two sets
of identical angles which are called vertical angles as shown in figure 2.12. A
transversal is a line that intersects two lines; the lines can be either parallel or
not. Figure 2.13 illustrates a transversal through two parallel lines. When two
parallel lines are intersected by a transversal then the corresponding angles
that are a result from the transversal create what is called similar angles. For
example, ∠A is similar or congruent to angles ∠C , ∠E , and ∠G . Likewise, ∠B
is congruent to ∠D , ∠F , and ∠H .BA

C

D

Figure 2.11: Adjacent angles

`1

`2

O

Figure 2.12: Vertical angles

`1

`2

AB

C D

EF

G H

Figure 2.13

`1

`2

A

B

D

E

Figure 2.14: `1 || `2

In figure 2.15 all three lines denoted as `1, `2, and `3 are parallel, or symbol-
ically `1 || `2 || `3. When two or more parallel lines are intersected by two or
more transversals then these intersecting lines create corresponding segments.
Corresponding segments are the line segments created when two or more par-
allel lines are intersected by two or more transversals. Figure 2.14 highlights the
line segment AB in blue. In figure 2.15 the line segment AB and DE are corre-
sponding segments as is BC and EF ; as is AC and DF . The ratios of correspond-
ing segments can be used to find the length of an unknown segment since the
ratios of corresponding segments are equivalent to each other. In other words:

AB

DE
= BC

EF
= AC

DF

`1

`2

`3

A

B

C

D

E

F

Figure 2.15: `1 || `2 || `3

Example 2.1.2:

Find the line segment DE .

`1

`2

`3

5

7 7.5

x

A

B

C

D

E

F

Though you can create an expression in several ways, it’s best to set the
problem up so that the unknown segment we are looking for, x, is in the
numerator. This step is not necessary but it does simplify the solution.
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x

5
= 7.5

7

= 7.5(5)

7
multiply both sides of the
equation by 5

= 5.3571

= 5.4 round result to least precise
number

2.1.3 Degrees and Radians

Up till now we have seen angles measured in only degrees. While there are
several units of measurement for an angle, in this book we will only look at
two (degrees and radians). Radians is a unit of measurement that has a distinct
relationship with the radius and the length of arc that the angle makes (more on
this topic in chapter 3). For now, all we need to know is that there are 2π radians
in a complete circle, and π radians in half a circle. In other words 180◦ = π

radians. It’s necessary to convert between degrees and radians often, thus we
can use the relationship that 180◦ = π radians to develop a quick conversion
between the two units.

To convert from degrees to radians, we need to know what 1 is in terms of the
number of radians to degrees. Another way to think of this is that degrees is a
unit of measurement, and when we multiply our given angle by our expression,
the degree unit needs to cancel out. Note: The steps taken to convert de-

grees to radian, or vice versa, are the
same steps for all unit conversions.

180◦ =π rad

180◦

180◦
= π rad

180◦
divide both sides by 180◦

1 = π rad

180◦

Thus, anytime we want to convert any angle thats given in degrees we just need

to multiply it by
π rad

180◦
. However, when we refer to angles, it is not common to

denote an angle in radians by writing "rad" appended to it, so from now on if
an angle is not identified as degrees, then it is assumed to be in radians.

Example 2.1.3:

Convert 30◦ to radians.

Solution:
To convert 30◦ to radians, all we have to do is multiply our given degree

measure by
π

180◦
.

30◦ · π

180◦
= 30◦π

180◦

= π

6
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Similarly, to convert from radians to degrees we can take the same relationship
of π = 180◦ to determine the expression needed to multiply our given angle in
radians by. We still need to find what 1 is in terms of the number of degrees to
radians, thus we have:

π= 180◦

π

π
= 180◦

π

1 = 180◦

π

Now, all we have to do to convert an angle given in radians to degrees is multiply

it by
180◦

π

Example 2.1.4:

Convert
5π

6
to degree measure.

Solution:

To convert
5π

6
to degrees we only need to multiply it by

180◦

π
.

5π

6
· 180◦

π
= 5 ·180◦ ·π

6π

= 150◦ notice that π cancels out in
the numerator and the
denominator.

r
θ

s = r

Figure 2.16: Degree and Radian

When the length of arc, denoted as s
in figure 2.16, is equal to the radius, r ,
then this is defined as one radian.

It is very important to understand the differences between degrees and radi-
ans. The radian unit of measurement refers to how many radii are along the
circumference of an arc with respect to the radius; while degrees simply par-
titions a complete circle into 360 parts from a fixed point at the center. Thus,
given a particular fixed angle and fixed radius, then the number of radii that are
in the arc created by the angle and radius is also fixed which we call radians.
Therefore, there is a direct correlation between the two units of measurement;
however, their similarities end there. For now it is sufficient to know how to
convert between them.

2.1.4 Polygons

A polygon is a figure that is enclosed by three or more line segments. The num-
ber of sides a particular polygon has determines it’s type. For instance a triangle
has three sides, a quadrilateral has four sides, and pentagon has five sides. We
look at polygons more closely in section 2.2
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2.1.5 Triangles

A triangle is a polygon that has three sides. The type of triangle is determined
by the properties of the sides, and/or angles. An equilateral triangle has all
sides equal in length, thus all angles are equal as well. An isosceles triangle has
two sides of equal length, thus each adjacent angle is equal as well. The scalene
triangle has no two sides the same. Perhaps the most important triangle that
we’ll be looking at is the right triangle where one angle within the triangle is
90◦. The 90◦ angle in a right triangle is always opposite the hypotenuse. Right
triangles are used extensively in trigonometry.

2 cm

2 cm2 cm

60◦

60◦

60◦

(a) Equilateral triangle

1.5 in1.5 in

70◦ 70◦

(b) Isosceles triangle

4 mm

3.8 mm5mm

(c) Scalene triangle

3 ft

5 ft4 ft

(d) Right triangle

Figure 2.17

The sum of the angles in any triangle is always 180◦. Because of this property,
if we are either given, or can determine, any two angles of a triangle, then the
last angle is easily found by subtracting the sum of the two known angles from
180◦. Likewise, using properties of the different types of triangles, we may be
able to find two missing angles given only one angle.

Example 2.1.5:

Find the measure of the two missing angles in degrees.

3 in3 in

20◦

Solution:
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Since both sides are the same length then we know this is an isosceles tri-
angle where the two adjacent angles to those sides are also the same. In
addition, since all angles in any triangle sum up to 180◦ the remaining two
angles, lets denote them each as x, can be found by taking the difference
of 180◦ and 20◦ and dividing by two.

20◦+2x = 180◦

2x = 180◦−20◦

2x = 160◦

x = 160◦

2
x = 80◦

The two missing angles are 80◦

The perimeter of a triangle is the distance around the triangle and can be found
by summing up all sides. For example, in figure 2.18 the length of the sides are
denoted generically as sides a, b, and c. To find the perimeter we just need to
add them up.

perimeter(P) = a +b + ca

bc

Figure 2.18: Triangle Example 2.1.6:

A triangular piece of scrap metal has sides that measure 15.6cm, 9.07cm,
and 19.33cm. What is the perimeter so the piece of scrap metal?

Solution:

P = a +b + c

= 15.6+19.33+9.07

= 44.0cm recall that your answer can
only be as precise as your least
precise number. Thus, the
answer must be precise to the
tenths place, so the zero is
necessary.
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A segment drawn from a vertex of a triangle to the midpoint of the line oppo-
site the vertex is called a median . The intersection of all three medians of any
triangle denotes the center of gravity which we call the centroid . The universal
symbol is used to denote the centroid; however, we will simply use C in this
text. Figure 2.19 illustrates the centroid of a triangle found by the intersection
of all three medians.

C

Figure 2.19

The area of a triangle can be found in several ways. First, if the height, or al-
titude , and the width of the base of a triangle is given or determined, the the
area can be found by the product of 1/2 times the base times the altitude.

Area = 1

2
·base ·height

or

A = 1

2
bh

Example 2.1.7:

Find the area of a triangle whose base is 3 feet, and altitude of 8 feet.

Solution:

A = 1

2
bh

= 1

2
·3 ·8

= 1

2
·24

= 12ft2 notice the unit is now ft2

which denotes square feet

Another method for determining the area of a triangle is called Heron’s for-
mula, or Hero’s formula . Hero’s formula is useful when the height of a trian-
gle is unknown. For example, if we had a triangle that isn’t a right triangle and
wasn’t given the altitude such as the triangle illustrated in figure 2.20 , we would
find it difficult to determine mathematically what the altitude was; however, if
we know the lengths of all the sides then we can still determine the area using
Hero’s formula. 26

20.57.5

Figure 2.20: TriangleHero’s formula is defined as follows: we define a variable s such that s is the
perimeter of the triangle divided by two or

s = P

2
= a +b + c

2

Then the area of the triangle is given by,

A =
√

s(s −a)(s −b)(s − c)

Example 2.1.8:

Find the area of the triangle in figure 2.20.

Solution:
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First we must determine s by taking the perimeter and dividing it by two.

s = 7.5+20.5+26

2

= 54

2
= 27

Now, we replace s with 27 in our formula. Keep in mind that it does not
matter which sides you’ve chosen for a,b, or c as they are arbitrary.

A =
√

27(27−7.5)(27−20.5)(27−26)

=
√

27(19.5)(6.5)(1)

=p
3422.25

= 58.5 the original values did not
indicate the units; however,
the answer is in square units.

A common triangle used in construction is called the 3,4,5 triangle. The main
property of this triangle is that it is a right triangle. In construction if you mea-
sure two walls out from a single pivot of three feet and four feet then the hy-
potenuse should measure 5 feet if the two walls do in fact form a 90◦ angle to
one another. This also works for any multiple of the 3,4,5 triangle such as 30’,
40’, and 50’. However, there is a better method to accomplish this task that will
allow us to use the exact measurements of the walls even if they’re not a multi-
ple of the 3,4,5 triangle and it is called the Pythagorean Theorem.

Pythagorean Theorem

4abc as shown in figure 2.21 is a right triangle if the sum of the squares
of the two legs, a and b is equal to the hypotenuse, c, squared.

a2 +b2 = c2

a

c
b

Figure 2.21: Right Triangle

20m

100m
x

Figure 2.22: Communication Tower

Example 2.1.9:

A communication tower shown in figure 2.22 is 100 meters tall. A cable is
anchored at the top of the tower and 20 meters from the base of the tower.
How long is the cable?

Solution:

The tower and cable can be illustrated by using a right triangle such as the
one shown below. Since this is a right triangle, we can use the Pythagorean
theorem to calculate the length of the cable which is denoted as x in Figure
2.22. It does not matter which legs of the right triangle you reference as a,
or b; however, side c must always be the side opposite the 90◦ angle.
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20m

x100m

Now, we have the following equation.

x2 = 202 +1002

x =
√

202 +1002

x = 102m Recall the answer must be
rounded to the least precise
number

Notice that there was no intermediate calculations such as squaring the
20 and 100 then taking the square root. The less intermediate calculations
we do, the less intermediate rounding we have to do. This will help ensure
our answers are more accurate. Todays calculators can perform many cal-
culations in one step.

Example 2.1.10:

If one leg of a right triangle is 3.25 feet long, and the hypotenuse is 5.5 feet
long, what is the length of the second leg of the triangle?

Solution:

Although it is helpful to draw a diagram of the problem, it’s sometimes not
necessary such as in this instance. Thus, we begin with the Pythagorean
theorem and substitute what we know.

a2 +b2 = c2

a2 +3.252 = 5.52 we could have chosen to
substitute 3.25 for a

a2 = 5.52 −3.252

a =
√

5.52 −3.252

a ≈ 4.4ft
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2.2 Polygons

In this section we look at polygons with at least four sides. In section 2.1 we
looked at the simplest form of a polygon which is the triangle. In this section
we will briefly introduce a handful of polygons and some of their properties.

After the triangle the next simplest polygon is called a quadrilateral meaning
shapes of exactly four sides. A pentagon is a polygon with five sides, and a
hexagon has six sides. All of these shapes have similar and sometimes different
properties which makes each of them very useful in certain applications.

Figure 2.23: Hexagonal Bolts

The hexagon is the most used shape for
nuts and bolts mainly because it pro-
vides plenty of surface area to grip by
different tools without excessive stress
on both the tool and bolt head.

2.2.1 Quadrilaterals

A quadrilateral is any four sided shape. Similar to that of triangles, quadrilater-
als have different names when they exhibit different properties. For example,
a square is a quadrilateral that has four equal sides with all angles measuring
90◦. A parallelogram has two pairs of sides opposite each other that are paral-
lel. Consequently, each pair of opposite sides to each other are also congruent.
Figure 2.25 shows a set of special quadrilaterals where each has a set of different
properties aside from simply being four sided figures.

(a) Quadrilateral

s

s

(b) Square

s

s

s

s

(c) Rhombus

a

b

a

b

(d) Parallelogram

l1

l2

(e) Trapezoid ( l1||l2 )

a

b

a

b

(f) Rectangle

Figure 2.24

While there are other special quadrilaterals with specific properties other than
those shown in figure 2.25 such as the kite where the kite has two pairs of con-
gruent adjacent sides, we will concentrate on the six quadrilaterals illustrated
in figure 2.25.

A trapezoid has two sides, say l1 and l2, such that l1 and l2 are parallel; sym-
bolically we say that l1||l2. A rectangle is similar to a square in that all adja-
cent sides form a 90◦ angle to one another; however, unlike the square where
all sides are congruent, the rectangle has opposite congruent sides. Again as a
consequence, the pairs of opposite congruent sides also are parallel. Also, no-
tice by these definitions that some quadrilaterals such as the trapezoid may fit
the definition of other quadrilaterals. For example, since a rectangle has two
pairs of opposite parallel sides, then it technically fits the definition of a trape-
zoid, but the converse of this statement is not true. This means that properties
of the trapezoid such as the equation for area would also apply to that of the
rectangle. This becomes very useful when applying properties of quadrilater-
als to approximate the area of irregular shapes. Lastly, the Rhombus is similar
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to that of the parallelogram where the rhombus has two pairs of parallel sides;
however, the sides of the rhombus are all the same length.

The perimeter of any polygon is the sum of all of the sides. Some shapes are
made easier to calculate the perimeter based upon their properties. For exam-
ple, since the square has all sides of equal length, then the perimeter would
simply be 4s where s is the length of one of the sides. To find the perimeter of
any quadrilateral we just have to sum up all four sides.

To calculate the area of a quadrilateral, we typically have to take the length of
at least one of the sides and the distance between the sides. In the case of the
square, to determine the area we take the length of the side, say s, and multiply
it by the distance between the sides which is also s, thus we have area = s ·s = s2.
The following are the formulas for calculating the perimeter and area of some
polygons.

a b

ba

h1

h2

A kite is a quadrilateral that has two ad-
jacent pairs of sides that are congruent.
The perimeter of the kite can be deter-
mined by summing up the lengths of
the sides, thus Perimeter(P ) = 2a + 2b.
The area of the kite can be determined
by Area(A) = 1

2 h1h2

a

b

c

d

f

h1

h2

(a) Quadrilateral
P=a+b+c+d
A= 1

2 · f · (h1 +h2)

s

s

(b) Square
P=4 · s
A=s2

s

s

s

s h

(c) Rhombus
P=4 · s
A=h · s

a

b

a

b h

(d) Parallelogram
P = 2a +2b
A = h ·a

l1

b

l2

a h

(e) Trapezoid
P = l1 + l2 +a +b
A = 1

2 h(l1 + l2)

a

b

a

b

(f) Rectangle
P = 2a +2b
A = a ·b

s

h

(g) Hexagon
P = 6s
A = 3sh

= 3
p

3
2 s2

= 2
p

3h2

Figure 2.25

Example 2.2.1:

Find the perimeter of a parallelogram with sides that measure 3.25 cm,
5.125 cm, 3.25 cm, and 5.125 cm.

Solution:
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To determine the perimeter we need to sum up the sides while keeping
in mind that the result can only be as precise as our lest precise number
since these are measurements. If we knew that the values were exact then
we could leave the answer correct to however many decimal values our
calcualtor gave.

P = 2a +2b

= 2(3.25)+2(5.125)

= 16.75 cm

Example 2.2.2:

Find the area of a trapezoid with bases that measure 20 m, and 30 m, while
the distance between the two bases (h) measures 10 m.

Solution:

A = 1

2
h(l1 + l2)

= 1

2
(10)(20+30)

= 500

2
= 250 m2 notice that final answer is in

square meters

75 mm

81
0

m
m

255 mm

50 mm

180mm

500mm

Figure 2.26: Concrete Barrier

C

B

A

Figure 2.27: Barrier Components

Example 2.2.3:

Figure 2.26 illustrates the cross section of a concrete barrier. Determine
the area of the cross section in square meters.

Solution:

The illustration, as it stand, does not represent any of the polygons that
we’ve seen thus far; however, we can break up the cross section into sev-
eral components as shown in figure 2.27, calculate the areas of each, and
then add them up to get the cross sectional area of the entire barrier. All
measurements are in millimeters, so we will have to convert the units to
meters at the end.

For section A we need to determine the lengths of the two bases. Nei-
ther is explicitly given, but enough information is shown to determine the
lengths. The first base of A (top of A) is l1 = 500−2(180)−2(50) = 40mm.
l2 can found with the same method: l2 = 500−2(180) = 140mm. We also
need the height of section A which is h = 810−255−75 = 480mm, thus the
area for A is
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AreaA = 1

2
h(l1 + l2)

= 1

2
(480)(40+140)

= 43200 mm2

Section B is also a trapezoid where the top length is the same as the bottom
length of section A. The bottom and height is given, thus we have

AreaB = 1

2
h(l1 + l2)

= 1

2
(255)(140+500)

= 81600 mm2

Section C is a rectangle so its area is

AreaC = ab

= 75(500)

= 37500 mm2

The total area, T, in square millimeters is sum of all the sections:

AreaT = AreaA +AreaB +AreaC

= 43200+81600+37500

= 162300 mm2

However, we were asked to find the area of the barrier cross section in
square meters. Since there are 1,000,000 square millimeters in one square
meter we have

m2 = mm2

1,000,000

= 162300 ���mm2

1,000,000 ���mm2

= 0.1623 m2

Note:
1mm = .001m, thus there are 1000mm
in 1 meter.

1000mm ×1000mm = 1,000,000mm2
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2.3 Circles

Unlike polygons where a shape is defined by segments of straight lines, Circles
have no straight lines; however, components of a circle do. In this section we
look at the circle and its parts. As with every shape we’ve seen so far, the names
and definitions of the components of a shape are incredibly important. For ex-
ample, If I gave you the equation for pi, π = C

d , you could also represent this
same ratio using the radius instead of the diameter of a circle. Ultimately, it is
up to you to recognize what components, or parts, are given, and whether or
not a substitution is needed.

2.3.1 Components of a Circle

ra
diu

s (r
)

center (c)

Figure 2.28
The circle has many parts where each part has specific properties. The center,
denoted by c, is probably the most recognized part and the one part that is most
self explanatory. Nevertheless, the center of a circle is located at a point that is
equidistant to every point along the circle. The radius is the distance from the
center to any point on the circle, and is denoted by r . The radius and the center
is shown in figure 2.28. A chord is a line segment that touches at two locations
of the circle. The diameter is a line segment that passes through the center, and
touches the circle at two locations. Consequently, the diameter is also a chord.
The tangent line intersects the circle at only one location, or point, thus does
not pass through the circle. A secant passes throught the circle while intersect-
ing the circle in two locations. The circumference is the perimeter of the circle.
Figure 2.29 illustrates most parts of the circle defined here.

ra
diu

s (r
)

diameter (d)

center (c)

chord
secant

tangent

Figure 2.29

One property with regard to the relationship of a tangent line and the radius of
a circle that’s certainly worth mentioning is the tangent line (any) creates a 90◦
angle with the radius at the point of intersection as shown in figure 2.30.

Figure 2.30

There are other names for parts of a circle. For example, if we partitioned the
circumference of a circle into two parts, then the result will give us a major and
minor arc. The section, or region, inside the circle as a result of the partition is
called a sector as can be seen in figure 2.31.

r

θ

sector

m
inor arc

m
ajor arc

Figure 2.31
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2.3.2 Circumference and Area of a Circle

As stated earlier in this section, the perimeter of a circle is called the circumfer-
ence. The equations for both the circumference and the area both involve the
irrational number π≈ 3.1415. While it is sometimes preferable to round π to a
certain precision, our calculations will be more precise while using the physical
key,

�� ��π , on the calculator. In this text, the physical π key will always be used
unless otherwise stated or instructed. Below are equations for the circumfer-
ence and area of a circle.

Circumference and Area of a Circle

C =πd = 2πr Circumference of a circle with
radius r , or with diamter d .

A =πr 2 = π

4
d 2 Area of a circle with radius r ,

or with diameter d .

Figure 2.32

Example 2.3.1:

Find the area and circumference of a circle given that the circle has a di-
ameter of 203.2mm.

Solution:

While it is usually a preference, some students prefer to use the radius in-
stead of the diamter. This could be due to forgetting the equations with re-
spect to the diameter, or simply prefer the equation with the radius. Nev-
ertheless, since we have equations with respect to the diameter, then we’ll
use those equations.

C =πd =π(203.2mm) = 638.4mm recall that we must round the
result to the least precise
number. In addition, we use
the

�� ��π key on our calculator.
Refer back to section 1.4 to see
why it’s not correct to round π
to one decimal place also.

A = π

4
d 2 = π

4
(203.2)2 = 32429.3mm2 note that it’s not necessary to

put parentheses around 203.2
at all, rather the parentheses
was used here to imply
multiplication and to keep
things legible.

Figure 2.32 shows the calculator output.
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Example 2.3.2:

What radius and circumference is required if the area of a circle is to have
78.5 square inches?

Solution:

Since we are given the area of the circle, then we begin by finding the ra-
dius using the equation for area.

A =πr 2

78.5 =πr 2

78.5

π
= r 2√

78.5

π
= r

r = 4.99873i n

≈ 5i n rounding to the tenths place
here forces us to round to 5

Thus, the radius will be 5 inches. From this we can determine the Circum-
ference of the circle by using the equation for circumference.

C = 2πr

= 2π(5)

= 31.4i n

The radius and circumference of a circle with an area of 78.5 in2 is 5 in,
and 31.4 in respectfully.

2.3.3 Sectors and Arcs

An arc is created by partitioning the circumference of a circle into two parts.
This partition creates a central angle, θ, with respect to the center of the circle
as shown in figure 2.33. When referencing an arc such as the minor arc in figure
2.33, we write ÙAB .

Arclength

The length of an arc, denoted s, created from a circle of radius r and
angle θ in (radians) is defined by:

s = rθr
θ

C

A

B

minor arc

major arc

Figure 2.33
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r

θ

s = rθ

Figure 2.34

Now that we have the formal definition of the arc length, it’s important to un-
derstand that the arc length, s = rθ, is the linear length of the arc. Moreover,
this is also why when determining the length of arc that the angle θ must be in
radians. Figure 2.34 illustrates the distance a circle, or wheel, has traveled with
a certain degree measure and radius. The distance the wheel has traveled is the
same length as the arc length. See sub-section 2.1.2 on page 51 to review the
relationship between degrees and radians if needed.

Example 2.3.3:

Find the arc length of a circle defined by a central angle of 60◦ and a radius
of 9 inches.

Solution:

First the equation for arc length requires that the central angle, θ, must be
in radians

θ = 60◦∗ π

180◦

= π

3
recall that angles that aren’t
defined in degrees are
assumed to be in radian, thus
it’s not necessary to write
π
3 r ad .

Now that we have the central angle in radians we just need to multiply it
by the radius to find the arc length

s = rθ

= 9
(π

3

)
= 3π since π represents the

irrational number 3.1415...,
then leaving the answer in this
form is useless to us unless
precision is needed later on.

≈ 9.424778

Since the radius and central angle was given and not specifically stated
that they were measured, we have to assume the two were exact values,
thus we don’t round the final answer to 9 inches. Note: in instances such
as this, rounding to a certain decimal value will often be asked such as in
homework problems.

The next example is a direct application of arc length to determine the number
of rotations a bicycle wheel makes with every turn of the crank. This exam-
ple illustrates that the arc length is not bound to just a section, or part, of the
circumference, rather the arc length can be the result of many revolutions of a
circle such as a wheel, gears, pulleys etc.



2.3. CIRCLES 69

wheel sprocket radius = 2"

crank sprocket radius = 4.75"

wheel radius = 15.5"

Figure 2.35: Bicycle Crank Components

Example 2.3.4:

Figure 2.35 above illustrates the propulsion mechanism for a bicycle where
the wheel has a radius of 15.5 in., the small sprocket attached at the center
of the wheel has a radius of 2 in., and the crank sprocket has a radius of
4.75 in. If the crank/pedal is rotated 180◦, how far does the bicycle travel?
Round the final result to the nearest hundredth.

Solution:

To begin, we need to find the arc length (i.e linear distance) of the crank
sprocket that has a radius of 4.75". To do this, we first need to convert 180◦

to radians which would be θ = 180◦
π

180◦
=π

s = rθ

= 4.75π substitute r = 4.75 and θ =π

Thus, the chain moves approximately 14.9 inches; however, we want to
avoid intermediate rounding so we use 4.75π and round the final answer.

To find the angle of the wheel sprocket we use the same equation as above
and solve for θ. Keep in mind that the variables in the equation now refer
to the wheel sprocket.

rθ = s

2θ = 4.75π substitute s for the arc length
we just previously found

θ = 4.75π

2
recall θ here is the angle for
the wheel sprocket.

θ = 2.375π 2.375 is still exact. no
rounding took place.

So, the wheel sprocket, and consequently the wheel, has rotated by an an-
gle of approximately 7.46 radians. Therefore, the wheel will travel a dis-
tance of:

s = 15.5(2.375π)

≈ 115.65i n

The bicycle traveled 115.65 inches.
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r
θ

C

A

B

Figure 2.36

Recall that the definition of a sector found in subsection 2.3.1 on page 65 is part
of a circle formed by an angle. To determine the area of a sector such as the
shaded region shown in figure 2.36, we will need the same components of the
sector as that of determining the arc length.

Area of a Sector

The area, A, formed by a circular arc of radius, r , and angle θ (in radians)
is defined by the equation:

A = 1

2
r 2θ

Example 2.3.5:

Determine the area of a sector formed by an angle of 30◦ and a radius of 5
cm. Round result to three decimal places.

Solution:

Since the equation for the area of a sector requires our angle to be in radi-
ans we have θ = 30◦ = π

6 .

A = 1

2
r 2θ

= 1

2
(52)

π

6

= 25π

12

≈ 6.545 cm2

The area of the sector is approximately 6.545 cm2.



2.4. GEOMETRIC SOLIDS 71

2.4 Geometric Solids
When referring to cylindrical or circular
objects, the term elements comes up of-
ten. An element, in geometry, is a term
used to describe a line segment, or set
of line segments that form the side of a
circular solid. For example, the line la-
beled h for the right circular cylinder in
figure 2.37 below is an element. The set
of all elements of form a cylinder.

So far all the figures that we’ve seen are plane figures, meaning they are are two
dimensional figures. Two dimensional figures are still important when under-
standing how to calculate the volume of a solid geometric shape. Volume is the
number of cubic units that occupy the entire space of a particlar 3-dimensional
shape. Some of the objects we look at are fairly intuitive when it comes to un-
derstanding the equations for for calculating volume such as cylinders. Typi-
cally, many people think of a cylinder as just a round tube, hollow or not, but
this is not completely correct.

2.4.1 Surface Area

There are two types of surface areas described in this section which is total sur-
face area, and lateral surface area. The lateral surface area is the area of all the
sides combined, but not including the top and bottom sections. The total sur-
face area is the area is the sum of the lateral surface area, the area of the top,
and the are of the bottom. Surface areas are always measured in square units.
For example, if we wanted to know how much much paint it would require to
paint a circular silo (storage container for grain on a farm), then we would need
to know the lateral surface area which excludes the dome shape at the top. If
we wanted to know how much grain the silo could hold, then we would want to
know the volume of the silo.

r

h

Figure 2.37: Right Circular Cylinder

h

r

Figure 2.38: Oblique Cylinder

2.4.2 Cylinders

A Cylinder is any 3-dimensional shape where the top and bottom are both cir-
cular and congruent, and any corresponding opposite elements are parallel.
For example, a rod where the top and bottom faces are congruent, but have an
elliptical shape would still be considered a cylinder. In this book, we look at two
types of cylinders which are called the circular cylinder, and the right circular
cylinder. A right circular cylinder is formed when the elements are perpen-
dicular to the base. The oblique cylinder is formed when the elements of the
cylinder are not perpendicular to the base. The equations for calculating vol-
ume, and surface areas are the same. The height, also called the altitude, is the
distance measured perpendicular to the top and bottom faces of the cylinder.

Below are the equations for determining the volume and surface areas of a
cylinder. However, it’s important to understand that when any shape has sides
that are parallel to each other, then the volume can be calculated by finding the
area of the cross-section of the shape and multiply it by its length. For example,
we now know that the are for a circle is A = πr 2, so to determine the volume of
a cylinder we just muliply the area by it length, or height.

Volume and Surface Area of a Cylinder

The volume, V , lateral surface area, L, and total surface area, T of a
cylinder with radius r , and altitude h is:

Figure: Volume: Lateral Area: Total Area:
Cylinder V=πr 2h L = 2πr h T = 2πr h +2πr 2
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2.4.3 Prisms

A prism is a solid geometric figure where the two faces (top and bottom) are
congruent, and whose sides are parallelograms that are also parallel to all other
adjacent or opposite sides. The height, h is the distance between the two faces.
Since the cross section of a prism can be one of many different shapes, the
equation for determining the volume will be different; however, the volume will
can be determined in the same manner as that of a cylinder. To calculate the
volume of a prism, first determine the area of the cross section (either the top
or bottom), then multiply it by the height.

h

Figure 2.39: Hexagonal Prism

h

Figure 2.40: Triangular Prism

w
w

Figure 2.41: Rectangular Parallelpiped
Prism

A prism’s name is determined by the polygon that makes up its bases. If a prism
has a triangle for a base, then it’s called a triangular prism. Moreover, if a prism
has a hexagon for a base then it’s called a hexagonal prism as can be seen in
figure 2.39. While a prism with a rectangular base and perpendicular sides is
appropriately called a rectangular prism, it is also known as rectangular par-
allelpiped. In addition, a cube is also a prism and can also be referred to as
aright square prism.

Determining the volume of a rectangular, or square, prism is probably the sim-
plest volume calculation we’ll have. Since the area of the base is determined
by multiplying the length and width, and in the case of the square we have
w · w = w2, then to find volume we just multiply the area of the base times
the height.

Vrectangular prism = l wh

In the case of a cube. we have:

Vcube = w3

Example 2.4.1:

How many cubic feet are in one cubic yard?

Solution:

One cubic foot is one foot cubed or (1 f t )3 = 13 f t 3 = 1 f t 3. Since there
are 3 feet in one yard, then we can calculate how many cubic feet are in
one cubic yard in the same manner by substituting 1 yard with 3 feet.

V = w3

(1 yd)3 = (3 ft)3

= 33 ft3

= 27 ft3

1 yd 3

There are 27 cubic feet in one cubic yard.
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40’
32’1/3’

Figure 2.42

Example 2.4.2:

A building is built with a base measuring 32 feet by 40 feet. A slab of con-
crete is to be poured by the same dimensions and 4 inches thick. How
many cubic yards of concrete must be ordered if the concrete supplier will
deliver in half-cubic yard increments up to 16 cubic yards?

Solution:

First, we have to make a decision. Do we want to perform our calculation
in feet or yards? Since we have most our measurements in feet already,
we can proceed in feet (it doesn’t matter which units we use). Now, that
we’ve chosen the units we’ll work with, all our measurements must be in
the same units. Since the depth is give in inches we need to convert it to
feet, thus we have

4" = 4 i n

1
· 1 f t

12 i n

= 1

3
f t

Second, it’s always a good idea to draw a picture of the problem as shown
in figure 2.42. In this instance, the problem is not so complex that an im-
age can’t be pictured in our minds eye; however, drawing a diagram always
helps. The volume of the slab, in cubic feet, is

V = 1

3
(32)(40)

= 1280

3
rounding to hundredths, or
tenths, here is precise enough
since we have to deal in half
cubic yards anyway.

≈ 426.67 f t 3

The slab contains approximately 426.67 cubic feet, but we need the answer
in cubic yards. Since we know from the previous example that there are 27
cubic feet in one cubic yard, we have 426.67/27 ≈ 15.8 yd3. There are 15.8
cubic yards of concrete needed to fill the slab, The minimum number of
cubic yards needed to be ordered is 16.

2.4.4 sphere

A sphere is a round object such that all points are equidistant from its center.
The radius of a sphere is the distance from the center to any point on the sur-
face of the sphere. The diameter is the distance between two points on the
surface of the sphere that also passes through the center.
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Volume and Surface Area of a Sphere

The volume, V , and total surface area, T of a sphere with radius r is:

Figure: Volume: Lateral Area: Total Area:
Sphere V = 4

3πr 3 N/A T = 4πr 2 r

Figure 2.43: Sphere

h

r

sl
an

t h
ei

gh
t =

s

Figure 2.44: Right Circular Cone

h

r

Figure 2.45: Oblique Cone

2.4.5 Circular Cones

A right circular cone is a shape formed from a circular base which tapers to a
point called the vertex that is perpendicular to the center of the base. Conse-
quently all elements of the right circular cone are congruent. The right circular
cone is the most frequently used form of cone that is used; for this reason it
will often be referred to as a cone. Similiarly to the equations for cylinders, the
equations for both volume, and surface areas are the same for both types of
cones (right circular cone, and oblique cone).

Volume and Surface Areas of Cones

The volume, V , lateral surface area, L, and total surface area, T of a
cone is given by:

Figure: Volume: Lateral Area: Total Area:
Cone V = 1

3πr 2h L =πr s T =πr (r + s)

With circular base radius, r , altitude, h, and slant height s.

note: Since the slant height for an oblique cone is undefined, there is no
equation to determine the lateral surface area.

2.4.6 Pyramid

A pyramid is any object where the base is a polynomial, and the sides converge
to a point called the vertex. Sides of a pyramid form a triangle, and are referred
to as lateral faces. When determining the volume of a pyramid, since the base
can be any multi-sided polynomial, then the variable B is used to denote the
area of the base. For example, if the base of the pyramid was triangular, then
the equation for the area of triangle would be used to determine B . Figure 2.46
below is an example of a pyramid where the base is a square, thus B = w2.

h s

w

Figure 2.46: Right Pyramid
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Volume and Surface Areas of Pyramids

The volume, V , lateral surface area, L, and total surface area, T of a
pyramid is given by:

Figure: Volume: Lateral Area: Total Area:
Pyramid V = 1

3 Bh L = 1
2 ps T = 1

2 ps +B

where p is the perimeter of the base, s is the slant height, h is the alti-
tude, and B is the area of the base.

480′

750′

Figure 2.47: Great Pyramid of Giza

480

325

s

Figure 2.48

Example 2.4.3:

Find the volume and lateral surface area of the Great Pyramid of Egypt
with an altitude 480 feet, and a base that is approximately square with a
measurement of 750 feet on a side. Round results to the nearest hundredth

Solution:

To begin, everything is given to calculate the volume of the pyramid, thus
the volume is:

V = 1

3
Bh

= 1

3
7502(480) where B = 7502 is the area of

the square base.

= 90 000 000. f t 3

The volume of the Great Pyramid of Giza is 90 million cubic feet. To deter-
mine the lateral surface area, we first have to find the slant height. Once
again, we draw an illustration (figure 2.48) of what is known, and the vari-
able we’re looking for.

Using Pythagorean’s theorem , a2 + b2 = c2, we can solve for the slant
height s.

s2 = a2 +b2

s =
√

a2 +b2

=
√

3252 +4802 Do not perform intermediate
rounding.

Now that we have s, the lateral surface area of the pyramid is

L = 1

2
(4)(750)

√
3252 +4802 ≈ 869 514.00 f t 2

.

(Note: if we performed intermediate rounding of s to 2 decimal places, or
even 4 places, the rounding error is significant enough to give us a differ-
ent final result. Avoid intermediate rounding when possible.)
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2.4.7 Frustrum

A frustrum can be in the shape of a cone or a pyramid where the shape appears
to have been removed. The bases, top and bottom, of they frustrum are parallel
as can be seen in figures 2.49 and 2.50. Since there are a limitless number frus-
trums in the shape of pyramid, we will focus on the frustrums in the shape of a
cone.

h

r2

r1

s

Figure 2.49: Cone Frustrum

Figure 2.50: Pyramid Frustrum

Volume and Surface Areas of Circular Frustrum

The volume, V , lateral surface area, L, and total surface area, T of a
pyramid is given by:

Figure: Volume: Lateral Area: Total Area:
Frustrum V = h

3 (B1 +B2 +
p

B1B2) L = s
2 (p1 +p2) T = L+π(r 2

1 + r 2
2 )

where p1 and p2 is the perimeter of the bases, s is the slant height, h is
the altitude, and B1 and B2 are the area of the respective bases.

3

r2 − r1 = 2−1

s

Figure 2.51

Example 2.4.4:

Find the volume, and the lateral surface area of a circular frustrum with
radii measured at r1 = 1 m, r2 = 2 m, and has an altitude measured to be
h = 3 m.

Solution:

The volume should be straight forward since the given information is all
that’s required to evaluate the equation for volume. The Lateral surface
area however, requires that we find the slant height as well.

V = h

3
(B1 +B2 +

√
B1B2)

= 3

3

(
π(1)2 +π(2)2)+

√
π2(1)2(2)2

)
under the radical π ·π is
simplified to π2

≈ 21.99115

≈ 22 m3 round to the least precise
number since the given
components were measured
and aren’t exact.

We can use the pythagorean theorem to determine the slant height as long
as the right triangle is drawn correctly (see figure 2.51).
Thus s =

p
32 +12 =p

10. Now, the lateral surface area is:

L = s

2
(p1 +p2) = s

2
(2πr1 +2πr2)

=
p

10

2
(2π(1)2 +2π(2)2) avoid rounding

p
10 for now.

≈ 29.80376

≈ 30 m2 again round to the least
precise number.
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2.5 Similar Geometric Figures

In this section we concentrate on similar figures such as similar triangles, and
similar volumes. By taking advantage of corresponding values to similar shapes,
we can often simplify calculations that would otherwise be tedious. Also, in this
section, we introduce a new concept called proportion. While we could spend
a great deal of time on covering all facets of the concept of proportion, we are
going to restrict our focus to adequately apply the concept to similar geometric
figures.

A proportion is a relationship between one variable to another (length, quan-
tity) who’s ratio is a constant. For two ratios to be proportional to each other,
their ratios must be equal. For example, we’ve already worked with proportions
without explicitly stating it such as when we reduce a fraction: (i.e. 4

8 = 1
2 ) We

would say that 4 out-of 8 is equal 1 out-of 2. Since the ratios are the same we
say the two quantities are proportional.

2.5.1 Continued Proportion
Note:
The proportion x : y = a : b can be writ-
ten as fractions two ways:

x

y
= a

b
or

x

a
= y

b

Notice that since x is proportional to a
they both are in the numerator of the
fraction. Same for y and b.

A proportion is commonly denoted as x : y which is equivalent to x
y , or verbally

we would say x out-of y . If we have two ratios that’s denoted as x : y = a : b,
then we call these two ratios proportional. A continued proportion involves
six, or more, variables such that

x : y : z = a : b : c

or equivalently :
x

a
= y

b
= z

c

Basically this means that if x
a = y

b = z
c , then x

a = y
b , y

b = z
c , and x

a = z
c . Continued

proportions are used extensively throughout similar figures with regard to their
lengths of sides, areas, volumes, angles, etc. It’s important to note that there are
extensions to the definition of continued proportion that this textbook does not
include since they are not relevant to the focus here.

Example 2.5.1:

A 20 foot board is to be cut so that the lengths have a ratio of 13:8:5, what
are the lengths of the sections of board? Round answer to the nearest 32nd

of an inch.

Solution:

Since each section of the board to be cut is a multiple of some unknown
length, say x, then we have

13x +8x +5x = 20

26x = 20

x = 20

26
≈ .769231 f t

The first board has a length of 13
( 20

26

)
ft., while the second has a length

of 8
( 20

26

)
ft. and the third has a length of 5

( 20
26

)
. However, we are asked to

round the answers to the nearest 32nd of an inch. There are several ways
to approach this, but the most straight forward way is to begin with the
decimal approximation in feet. Since 13

( 20
26

)= 10.0 feet, we’ll use the sec-
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ond section of board to illustrate the unit conversion 8
( 20

26

)
is 6.153846154

ft. Now, we have 6 ft. and a fraction of a foot that needs to be converted
to inches. So, take the fractional component and multiply it by 12, since
there are 12 inches in a foot, to get 0.153846 ft 12in

1 ft = 1.846154 inches. Now
we have 6′ 1.846154", and since we have little idea what 1.846154 inches is
as a fraction we convert 0.846154 in to 32nd by use of proportions.

x

32
= 0.846154 in

1

x = 32(0.846154)

= 27.08 32nd of an inch

rounded to the nearest 32nd we have 27
32 . Finally, the second length is 6′ 1 27

32 ".
Ideally, all this calculation is done within the calculator in just a few keystrokes
as shown in figure 2.52. The third measurement is shown in figure 2.53.
Thus, we have the following lengths:

length 1: 10′ 0′′

length 2: 6′ 1
27

32

′′

length 3: 3′ 10
5

32

′′

Figure 2.52

Figure 2.53

Example 2.5.2:

Find the values for the unknown variables: x : 3 : 5 = 4 : y : 15

Solution:

It’s often easier to write the ratios as fractions as opposed to the shorthand
notation. Also setup each equation where only one unknown (variable)
exists (if possible):

x

4
= 5

15

3

y
= 5

15

x = 4(5)

15
3 = 5y

15

x = 20

15
3(15) = 5y

x = 4

3
5y = 45

y = 45

5

y = 9
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2.5.2 Similar Triangles

a

b

c

x

y

z

Figure 2.54: Similar Triangles

Similar triangles are two, or more, triangles that have congruent correspond-
ing angles. The significance of similar triangles, or many similar shapes for that
matter, is that the corresponding sides are proportional. This fact provides a
very useful method for determining unknown sides that might otherwise be
more difficult to solve. For example, figure 2.54 illustrates two similar triangles
that has the following continued proportion:

a : b : c = x : y : z or equivalently x : y : z = a : b : c

after rewriting in fractional form we have

a

x
= b

y
= c

z
or

x

a
= y

b
= z

c

Example 2.5.3:

Find the the values for x and y for the similiar triangles below. Measure-
ments are not exact.

2.004 m

4.01 m

3.81 m
5.72 m

x

y

Solution:

Since the two similar triangles are proportional, then we must first match
up the proportional sides: x : 2.004, 5.72 : 3.81, and y : 4.01. The propor-
tions can be set up as 2.004

x = 3.81
5.72 , or x

2.004 = 5.72
3.81 . Though, we’ll reach the

same result either way decide to set up the equation, it’s simplest to set up
ratios so that the unknown variable is in the numerator.

x

2.004
= 5.72

3.81

x = 2.004(5.72)

3.81

≈ 3.01 m results are rounded to the
least precise number.

When determining the other unknown variables, it’s best to avoid results
we just found such as x = 3.01 (if possible) for a couple reasons. One, there
is always the possibility the our result is incorrect which will make all re-
sults dependent on it incorrect as well. Two, though not an issue with this
problem, if the values given were exact, then it’s best to use the exact val-
ues since our results may be approximated (rounded).

y

4.01
= 5.72

3.81

y = 4.01(5.72)

3.81

≈ 6.02 m
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It can also be shown that the ratio of adjacent sides are congruent to the corre-
sponding similar triangle. For example:

a

x
= b

y

ay = bx cross multiply

a

b
= x

y
divide both sides by b and y

Repeating this on all possible equations, then we have the following equivalent
rational expressions:

a

b
= x

y

a

c
= x

z

b

c
= y

z

The reciprocal is also true.

b

a
= y

x

c

a
= z

x

c

b
= z

y

Example 2.5.4:

The illustration below represents a tower and a person standing on the
shadow the tower makes. The person stands at a point so that the shadow
cast by the person ends at the same location that the shadow ends cast by
the tower. The person stands at 6 ft 2in tall, and his shadows length was
measured at 10 ft 1in long. The length of the shadow cast by the tower was
389 ft. 2 in. long. How tall is the tower rounded to the nearest inch?

389′2′′

x

6′2′′

10′1′′

Figure 2.55
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Solution:

The triangle that the tower makes and the person makes with respect to
the lengths of their respective shadows creates a set of similar triangles.
With the information given, there are several ways to set up our ratios to
solve for the height of the tower. We’ll do one way here, but see if you can
find another ratio to get the same result.

height of tower (x)

height of man
= length of tower shadow

length of man’s shadow

x

74
= 4670

121
convert ft. to in.

x = 74(4670)

121

≈ 2856 i n rounded to the nearest inch.

The tower stands approximately 238 feet tall.

2.5.3 Similar Figures

Similar figures When any other figure, plane and solid figures, are similar, then
the distance between any two points on one figure is proportional to the similar
figure. The, any two points can represent any lengths such as radii, circumfer-
ence, slant height, etc..

Example 2.5.5: – Similar Figures

Below are two similar cone frustrums, what is the slant height, s2, of the
larger frustrum, and the radius, R1 of the larger frustrum?

2.50cm

R1

r1

2.70cm
3.75cm

3.00cm

r2

s2

Figure 2.56

Solution:

Since these two figures are similar, then we know that all of their corre-
sponding segments are proportional.

R1

R2
= r1

r2
= s1

s2
= h1

h2
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s2

h2
= s1

h1

s2

3.75
= 2.70

2.50

s2 = 3.75(2.70)

2.50

= 4.05 cm recall the zeros at the end of
measurements are significant
because they define the
precision; thus we must round
to the hundredths place.

To find R1 we need to setup a similar ratio of corresponding segments.

R1

R2
= h1

h2

R1

3.00
= 2.50

3.75

R1 = 3.00(2.50)

3.75

= 2.00 cm

note:
additional equivalent proportions can
be set up by manipulating known pro-
portions. For instance:

r1

r2
= h1

h2

r1h2 = r2h1

r1

h1
= r2

h2

2.5.4 Areas and Volumes of Similar Figures

The ratio of the areas of any similar figures is equal to the ratio of the squares
of any corresponding dimensions. For example, say we have two circles where
one is larger than the other, thus we have the radius of the smaller as r1, and r2

for the larger, then the ratio of their areas is the following

A1

A2
= πr 2

1

πr 2
2

= r 2
1

r 2
2

While it’s obvious to see how this simplifies to the ratio of the radii squared,
the definition states that we can use any corresponding dimensions. Therefore,
what would happen if we set the ratios of the areas equal to the ratios of the
circumferences squared.

A1

A2
= C 2

1

C 2
2

= (2π)2r 2
1

(2π)2r 2
2

= r 2
1

r 2
2

We, got the same result. In fact, we are not restricted to full dimensions of these
figures either, rather we will still get the same result if we use a fraction of the
circumference, or diameter, etc.
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Example 2.5.6:

A floor plan for a house has a scale where 1/4 in. = 1 ft. A room on the
floor plan has an area of 15 square inches. How many square feet does the
actual room have?

Solution: Let A2 represent the area for the actual room, while A1 = 15 in2

is the area for the room on the floor plan. 1/4 in. represents a fraction
of the length of either the width or length of the room on the floor plan,
and 1 ft. is a fraction of the length of the actual room’s length or width. It
doesn’t matter whether we’re referring to the length or width of the room,
only that it is a corresponding dimension. Thus, we can set our ratio’s up
as the following:

area of room (A2)

area of plan (A1)
=

(
length of room

)2(
length of plan

)2

A2

A1
= 12

(1/4)2

A2

15
= 12

(1/4)2

A2 = 15(1)2

(1/4)2

= 15(1)(16)

= 240 ft2

The area of the actual room is 240 square feet.

3m

7m2

6m

Figure 2.57

Example 2.5.7:

Figure 2.57 illustrates two similar triangles where the smaller triangle has
an area of 7 m2, what is the area of the larger triangle?

Solution:

Since we are told the two triangles are similar, then we can determine the
area of the larger triangle in the same way we solved the previous example.
Letting A2 and A1 represent the areas for the larger and smaller triangles
respectively, we have

A2

A1
= 62

32

A2

7
= 62

32

A2 = 7(6)2

32

= 252

9

= 28 m2
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There is a similar relationship with regard to the volumes of similar figures
where the ratio of corresponding volumes is equal to the ratio of correspond-
ing dimensions cubed. For instance, a sphere of radius r1 has volume equal
to (4/3)πr 3, if we take the ratio of this sphere and another larger sphere with
radius r2 we get

V1

V2
= (4/3)πr 3

1

(4/3)πr 3
2

= r 3
1

r 3
2

Again, we are not restricted to just the radius, rather we can show this is true for
any corresponding dimension of the sphere, or fraction of it, in the same way it
was shown for areas.

h1 = 2.50cm

r2

r1

s1 = 2.70cm

h2 = 3.75cm

R2 = 3.00cm

R1

s2

Figure 2.58

Example 2.5.8:

In Example 2.5.5 we had two similar frustrums (shown in figure 2.58). If
the volume of the smaller frustrum is 18.33 cubic centimeters, what is the
volume of the larger frustrum?

Solution:

In this example, and based upon the information given, the only corre-
sponding dimensions we have for both frustrums is the height.

V2

V1
= h2

h1

V2

V1
= 3.753

2.503

V2

18.33
= 3.753

2.53

V2 = 18.33(3.75)3

2.53

= 61.86 cm3

The larger frustrum has a volume that is approximately 61.86 cubic cen-
timeters.
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3.1 Angles

initial side
vertex

te
rm

in
al

sid
e

Figure 3.1

In section 2.1 we introduced angles, and the different types of angles. In chap-
ter 2 we stated that an angle is the amount of rotation of a ray about its vertex.
In this chapter, it will be helpful to expand on the definition of an angle by as-
suming that the rays, or sides, used to define an angle aren’t entirely arbitrary.
For instance, when creating an angle we begin with an initial side, and end the
angle at the terminal side as shown in figure 3.1. The main purpose of this mod-
ification to the definition of an angle is that we will often refer to the sides of an
angle, and need to be able to distinguish between them.

In this section, we will briefly review a few concepts of angles, and degree mea-
sure; however, for more details on these topics you should refer to section 2.1.

3.1.1 Positive and Negative Angles

Figure 3.2: Angle greater than 360◦

Angles can be generated by rotating a ray about a fixed point. The starting po-
sition of the ray is called the initial side of the angle, while the final position
of the ray is called the terminal side of the angle. The fixed point about which
the ray is rotated is called the vertex of the angle. It is possible that the ray is
rotated about the vertex by more than one full revolution. In reality, the ray can
be rotated about the vertex as many times as we like as illustrated in figure 3.2.
An angle generated by rotating a ray in the clockwise direction is defined as a
negative angle, and if the rotation is counterclockwise the angle is a positive
angle as can be seen in figure 3.3.

initial side

te
rm

in
al sid

e

negative angle

positive angle

Figure 3.3

3.1.2 Degrees and Radians

There are two standard units of measurement that we use for describing the
size of an angle: degree and radian. In degree measure, a complete circle is
divided into 360◦, thus one degree (denoted 1◦) is an angle that is generated by
rotating a ray 1

360 of one complete revolution.

There are many practical purposes for which a degree is small enough to pro-
vide sufficient precision. However, when this is not the case and higher preci-
sion is needed, then the decimal system is often used. There are some applica-
tions where describing a fraction of an angle using decimals is not preferred. In
this case, degrees are divided into sixty equal parts called minutes, and minutes
are divided into sixty equal parts called seconds. This means that one minute
(denoted 1′) is 1/360 of a degree, and one second (denoted 1′′) is 1/360 of a
minute or 1/3600 of a degree.

There are several hypothesis as to the origin of the base 60 numeral system,
but its advantages are likely the motivation behind its use. For instance, first
imagine a time before calculators and realize that 60 is the lowest number that
is divisible by 1, 2, 3, 4, 5, and 6 making some calculations less tedious. When
referring to angle measure, the base 60 numeral system called sexagesimal is
often preferred in measuring time, angles, and geographical locations (latitude
and longitude).
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Example 3.1.1:

Express 16.1803◦ to an equal angle to the nearest second.

Solution:

To begin, recognize that the minutes, and seconds of an angle represent
the fractional component, thus we know that the answer should be of the
form 16◦ x ′ y ′′. We have to determine how many minutes are in 0.1803◦
first. To do this we multiply 0.1803 by 60.

x = 0.1803(60) = 10.818′

Since seconds represent a fraction of a minute, we calculate how many
seconds are in 0.818′ by multiplying by 60 again.

y = 0.818(60) = 49.08′′

Thus, 16.1803◦ = 16◦ 10′ 49′′

Some calculators have the ability to do these conversions for you; however,
most do not. For this reason, and to better understand the nature of degrees,
minutes, and seconds, it’s important to know how to do these conversion by
hand.

Sometimes it’s preferable, or even necessary, to work with angles in decimal
form only. Depending on how much rounding occurred, if any, during the con-
version to degrees-minutes-seconds, this always adversely affects the precision
of the angle. In the last example we rounded to the nearest minute while the
original angle was precise to ten-thousandths of a degree; in the next exam-
ple we see how much this affected our precision by converting back to decimal
form.

Example 3.1.2:

Express 16.1803◦ = 16◦ 10′ 49′′ to an equivalent angle rounded to the ten-
thousandths place.

Solution:

To determine how many degrees 10 minutes is, we must divide by 60 which
gives 10/60 = 0.16. Since we are attempting to avoid intermediate round-
ing we’ll need to use 10/60 in fractional form because of its non-terminating
decimal. Next, we need to determine how many minutes make up 49 sec-
onds, before converting to degrees. We accomplish this by dividing 49 by
60 to get the number of minutes, then divide by 60 again to get the number
of degrees. Alternative, yet equivalently, we could divide 49 by 3600. After
putting adding both conversions together we get:

16.1803◦ = 16◦ 10′ 49′′ = 16◦ +
(

10

60

)◦
+

(
49

3600

)◦
≈ 16.1803◦
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In this example, the rounding that occurred in the previous example was
not significant enough to alter the conversion back to decimal form; how-
ever, this is not always the case.

Recall from section 2.1.3 that radians is a unit of measurement for an angle that
is equal to the length of arc that it subtends. It is very important to understand
the differences between degree measure and radian measure. Degree measure
is simply a measure of angle without any regard to the length of the arc from
which the angle is formed; however, radian measure is still a measure of an
angle, but the units coincide with the length of arc of a circle of radius 1. So
when should we use degrees, or radians? Typically we use the unit that the
information is in; however, since degree measure has no reference to the length
of arc, then anytime we are asked for length, velocity, accelration, etc. of an
object moving in a circular motion then radians must be used.

To recall the equation needed to convert from degrees and radians, and vice
versa, we only need to recall the proportion 180◦ = πr ad . From this propor-
tion, we can create an equation to convert between the two units angle mea-
surement.

Convert Between Radian and Degree Measure

Let d represent an angle in degrees, and r an angle in radians.

r

π
= d

180◦

Example 3.1.3:

Convert 60◦ to radians.

Solution:

Using the proportion defined above, we just need to substitute 60◦ for d
and solve for r .

r

π
= d

180◦

r

π
= 60◦

180◦

r = π(60)

180
The degree symbol is a unit of
measurement which cancels
out.

r = π

3
60

180 reduces to 1
3 .

To convert from radians to degrees, we can use the same proportion and substi-
tute our angle in radians for r , then solve for d . Recall that an angle measured
in radians is often not identified as a denominate number; rather the absence
of a degree symbol identifies the angle as radian measure. In addition, π seems
to be almost synonymous with angles measures in radians; however, this is not
always the case. It’s often we deal with angles in decimal form only. Basically,
if an angle is not identified with a degree symbol, then it is assumed to be in
radian measure.
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3.1.3 Coterminal Angles

A coterminal angle occurs when two angles share the same initial side and ter-
minal side. Regardless of how many revolutions one angle makes, if the the
terminal side is the same as the other angle, then they are coterminal. For ex-
ample, if one angle is measured at 30◦, and another angle is measured at 390◦,
then the two angles are coterminal. Figure 3.4 illustrates an angle measured at
30◦, and another angle measuring 390◦. Figure 3.5 shows two coterminal angles
measuring 120◦ and −240◦.

Figure 3.4: Coterminal Angels

120◦

−240◦

Figure 3.5

Given any angle, to find another angle that is coterminal we only need to either
add, or subtract 360◦ (±2π if in radians), or any multiple of it. For instance,
we know that 30◦ and 390◦ are coterminal, then 30◦ + 5(360◦) = 1830◦ is also
coterminal.

For homework purposes, if you are given an angle and asked to find both a pos-
itive, and negative coterminal angles for it, then only add 360◦, or 2π if in radi-
ans, for the positive angle. Subtract 360◦, or −2π if in radians, for the negative
coterminal angle. The reason for this is that there are infinitely many cotermi-
nal angles for any given angle, and we must narrow the possibilities for the sake
of right and wrong answers.

3.1.4 Angles in Standard Position

Technically an angle can be defined with its initial side and terminal side ori-
ented in any position you like. However, an angle defined in standard position
is oriented so that the initial side coincides with the positive x-axis, and the ver-
tex is located at the origin. Figure 3.6 shows an angle of 60◦ drawn in standard
position.

y

x
60◦

Figure 3.6: Standard Angle at 60◦

When working within the Euclidean plane(two-dimensional space), or the more
common term Cartesian coordinate plane,we often refer to quadrants as quad-
rant I , I I , I I I , and IV . Beginning with quadrant I located where both x, and
y values are positive, we label the other quadrants in a counter-clockwise rota-
tion. Below, in figure 3.7, each of the four quadrants are shown.

y

x

Quadrant IQuadrant I I

Quadrant I I I Quadrant IV

Figure 3.7
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3.2 Trigonometric Functions

3.2.1 Trigonometric Functions

For an angle in standard position, there are six possible ratios for the sides of
the triangle formed with respect to the angle θ. Figure 3.8 illustrates a right
triangle formed from an angle in standard position with radius r , and angle θ.
Notice that the radius is arbitrary, this is because regardless of the length of r ,
or any point (x, y), along the ray in the direction defined by θ, these six ratios
will always have the same value. On the other hand, the following six ratios are
entirely dependent on the angle θ, and will give different values as θ is changed.
If θ and another angle, say φ, are coterminal angles, then the ratios will be the
same.

The following six trigonometric function are defined based on the illustration
of figure 3.8.

y

x

(x, y)

θ

y

x

r

Figure 3.8

Trigonometric Functions

Sine of θ: sinθ = y

r
Cosecant of θ: cscθ = r

y

Cosine of θ: cosθ = x

r
Secant of θ: secθ = r

x

Tangent of θ: tanθ = y

x
Cosine of θ: cotθ = x

y

y

x
9

θ

r

(9,12)

12

Figure 3.9

Example 3.2.1:

Find the six trigonometric functions if the point (9,12) lies on the terminal
side of an angle drawn in standard position. Leave answers in exact form.

Solution:

Drawing an illustration and labeling the information given usually helps,
but is not necessary. Figure 3.9 shows the information given with labels.
In order to state the six trigonometric functions, we will have to find the
length of the hypotenuse first. This can be done using the Pythagorean
theorem which is covered in section 2.1.

r =
√

92 +122 =p
225 = 15

Substituting with x = 9, y = 12, and r = 15 we have

sinθ = 12

15
= 4

5
cscθ = 15

12
= 5

4

cosθ = 9

15
= 3

5
secθ = 15

9
= 5

3

tanθ = 12

9
= 4

3
cotθ = 9

12
= 3

4

Since a point can be defined anywhere within the plane, we will often encounter
points where either the x-coordinate, y-coordinate, or both are negative. Nev-
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ertheless, the hypotenuse of the triangle formed by any point (x, y) is never neg-
ative. Looking back at the Pythagorean theorem we see that r =

√
x2 + y2 can

never result in a negative value.

y

x
-1.618

θ

r

(−1.618,2.718)

2.718

Figure 3.10

Example 3.2.2:

Find the six trigonometric functions if the point (−1.618,2.718) lies on the
terminal side of an angle drawn in standard position. Leave answers to the
nearest thousandth.

Solution:

Just as we did in the last example, we have to find r using the Pythagorean
theorem first.

r =
√

(−1.618)2 +2.7182 ≈ 3.16314

Since r has resulted in a possible non-terminating decimal, we’ll have to
round the result. In an attempt to avoid too much error due to intermedi-
ate rounding, we’ve rounded r to two more decimal places than the final
result requires.

Now that we have r , the six trigonometric functions are:

sinθ = 2.718

3.16314
= 0.859 cscθ = 3.16314

2.718
= 1.164

cosθ = −1.618

3.16314
=−0.512 secθ = 3.16314

−1.618
=−1.955

tanθ = 2.718

−1.618
=−1.680 cotθ = −1.618

2.718
=−0.595

The examples shown in this section refer to the length of r as simply the ra-
dius, or hypotenuse of the triangle. The length of r is typically referred to as the
radius vector. Later, in chapter ??, we discuss vectors in greater detail.

y

xp
3

θ

2

(
p

3,1)

1

Figure 3.11

Example 3.2.3:

Given that the sinθ = 0.5, find the remaining trigonometric functions.

Solution:

Again, the best way to begin is to draw a diagram of the information given,
and label what is known. Since sinθ = x

r , then we have two approaches
that we could take for this problem. The first is to convert the decimal 0.5
into a fraction of 1

2 where x = 1, and r = 2. The other approach we could
take is to let x = 0.5, and r = 1 so that the fraction looks like 0.5

1 . Either
method will give the same result. Here, we’ll go with the first approach;
however, you should try the second on your own to verify the results are
the same.

Using the Pythagorean theorem we find that x =
p

22 −12 = p
3, and can

now list the remaining trigonometric functions:
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sinθ = 1

2
cscθ = 2

1
= 2

cosθ =
p

3

2
secθ = 2p

3
= 2

p
3

3

tanθ = 1p
3
=

p
3

3
cotθ =

p
3

1
=p

3

3.2.2 Rationalizing the Denominator

You’ll may have noticed that the radicals in the denominator, in the last exam-
ple, were simplified so that the radical is in the numerator. This process of sim-
plification is called rationalizing the denominator. There are several reasons
for doing this which go back to when arithmetic was done by hand; however,
today it’s just good practice to maintain a standard. Take a look at the example
below, and ask yourself which you would rather calculate by hand.

1p
3
≈ 1

1.7320500808...

p
3

3
≈ 1.7320500808...

3

Even using todays technology computers would begin to lose precision with
an irrational number in the denominator, albeit probably not by the precision
in which we’re interested in. Regardless, all answers in both the textbook, and
on-line will use the rationalized form when applicable.

To rationalize the denominator, we must first understand that we can only mul-
tiply a number, or fraction, by a value that’s equivalent to 1. In the instance

above for 1p
3

, the value that was multiplied was
p

3p
3

. From there we use proper-

ties of roots and exponents from section 1.3 to simply the expression.

1p
3
= 1p

3
·
p

3p
3

=
p

3p
3
p

3

=
p

3(p
3
)2 you may recognize that

squaring a square root cancels
each other leaving only the 3,
but if not then continue to use
properties.

=
p

3

3
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3.3 Values of Trigonometric Functions
y

x
x

30◦

1

(x, y)

y

Figure 3.12

In the last section we found out how to get the trigonometric values if given a
point in the plane, or if given one other trigonometric function value. In this
section we look at the function values for specific angles of θ, some trigono-
metric identities, and trigonometry using the calculator.

3.3.1 Exact Trigonometric Function Values

There are only a handful of trigonometric values in which we can easily deter-
mine their exact values. Specifically, the values correspond to angles that are
multiples of 30◦, and multiples of 45◦. To begin, lets take a look at the trigono-
metric values for 30◦. However, in an attempt to simplify the arithmetic, we’ll
assume the length of the radius vector is 1. If you recall from the previous sec-
tion 3.2, the length of the radius vector is not a concern since the ratios for the
trigonometric functions always result in the same value, thus letting r = 1 is just
as arbitrary as letting r =p

2.

x

y
1

30◦

Figure 3.13

x

y
1

30◦

1

y

1

Figure 3.14

x

1
2

1

30◦

Figure 3.15

Before we begin, take a moment to study figure 3.12. You’ll notice that aside
from knowing the angle, and the length of the radius vector that we don’t have
much else to work with (at least for now) at first glance. To determine the exact
values for both x, and y , it may be easier if we redraw the triangle without some
clutter as shown in figure 3.13.

If we take advantage of geometry, we can deduce at least one side of the triangle.
For instance, redraw another triangle that is a mirror image about the x-axis of
the one shown in figure 3.13. When we do this, we get an equilateral triangle
as shown in figure 3.14. An equilateral triangle has all sides of the same length.
Since we know the length of r to be 1, then all sides of the equilateral triangle
is 1. Notice that there are two y values in this illustration; this means that one
of the y values must be equal to 1/2. If we redraw our first triangle with y = 1/2
(Figure 3.15), then the use of the Pythagorean theorem will give us the value for
x.

x =
√

12 −
(

1

2

)2

=
p

3

2

For a 60◦ triangle the arithmetic and logic are the same except the values for
x and y will be swapped. I encourage you to verify this on your own, but for
convenience the 60◦ triangle is shown below. Note that all colored labels were
not known to begin with.

y

x
60◦

1

( 1
2 ,

p
3

2 )

p
3

2

1
2

Figure 3.16



94 CHAPTER 3. INTRODUCTION TO TRIGONOMETRY

y

x
x

45◦

1

(x, y)

y

Figure 3.17

x

y
1

45◦

Figure 3.18

x

y = x
1

45◦

45◦

Figure 3.19

y

xp
2

2

45◦

1

(p
2

2 ,
p

2
2

)

p
2

2

Figure 3.20

For a 45◦ angle with r = 1, the logic is more straight forward. Figure 3.17 shows
an illustration of what is known. Similarly, things are a little easier to follow
by redrawing the triangle showing only the information that’s needed (figure
3.18). Since the angle opposite the hypotenuse is a right angle (90◦), and the
sum of all angles in any triangle is 180◦, then the remaining angle must be 45◦
as well. We know that if the two angles have the same measure in a triangle,
then its called an isosceles triangle. Consequently, the two adjacent sides must
also be the same which means that for whatever value x is, the value for y is the
same. Redrawing the illustration with this new information is shown in figure
3.19. From here the Pythagorean theorem can determine the value for x when
we substitute y = x.

x2 + y2 = r 2

x2 +x2 = 12 substitute for r = 1, and y = x.

2x2 = 1

x2 = 1

2

x =±
√

1

2

=
p

1p
2

we’re only interested in the
positive radical, so drop the ±
as no sign implies positive.

= 1p
2

while this is correct, we want
to rationalize the
denominator by multiplying

by
p

2p
2

.

= 1p
2
·
p

2p
2
=

p
2

2

Thus, the exact values for a 45◦ angle are x =
p

2
2 , and since y = x, then y =

p
2

2
as well. The illustration for the 45◦ angle in standard position is shown in figure
3.20.

So far, we’ve only seen the exact values for angles of 30◦, 60◦, and 45◦; how-
ever, we stated that we can determine the exact values for any angle that was
a multiple of these angles. Because of the symmetric nature of a circle with a
fixed radius, meaning the lengths of x and y are the same when reflected about
the axes, the values for multiples of these angles will be the same except for
possible changes in signs. In addition, multiples of these angles that lie on an
axis (multiples of 90◦), either x-axis or y-axis, will have different values as well;
specifically, the values of x and y will be either a zero or ±r depending on the
angle θ.

Since the trigonometric function values are ratios of the sides of a triangle, it’s
not necessary to solve for the exact values as the radius changes. For instance,
if you’re asked to find the exact value for the sin30◦ of a triangle that has a hy-
potenuse of length 10, then the answer will be the same as that of triangle with a
hypotenuse of length 1 which is 1/2 as we’ve solved earlier. You are encouraged
to commit these few trigonometric values, shown on the unit circle presented
in subsection 3.3.2, to memory as they are used often.
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3.3.2 The Unit Circley

x
(1,0)

(0,1)

(−1,0)

(0,−1)

r =
1

(x, y)

Figure 3.21

The unit circle is a circle of radius 1 (one) centered at the origin (0,0). Often
in trigonometry, the unit circle is depicted with angle measures, and their re-
spective Cartesian coordinates for known exact values (figure 3.22). Cartesian
coordinates is a system that specifies each point uniquely in a plane by a pair
of signed numerical values, which are fixed distances to the point from the axes
(in short, the point (x, y) you’re used to). Figure 3.21 shows the unit circle with
an arbitrary point and arbitrary radius used for reference.
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Figure 3.22: Unit Circle

Trigonometric Functions for the Unit Circle

Sine of θ: sinθ = y Cosecant of θ: cscθ = 1

y

Cosine of θ: cosθ = x Secant of θ: secθ = 1

x

Tangent of θ: tanθ = y

x
Cosine of θ: cotθ = x

y
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Looking at figure 3.22 notice the symmetry of the points around the circle. Con-
sidering that 30◦ and 60◦ angles have the same, yet reversed, values; and the 45◦
angle has the same values for both x and y makes recalling these values less in-
timidating. As stated before, many calculators do not display answers in exact
format; therefore, these values would have to be committed to memory.

Example 3.3.1:

Using the unit circle, find the sinθ, cosθ, and tanθ where θ = 45◦

Solution:

Since x = cosθ, y = sinθ, then both x and y are
p

2
2 . Thus we have

cos45◦ =
p

2

2
and sin45◦ =

p
2

2

Since tanθ is defined as the ratio of y/x, then

tan45◦ =
p

2
2p
2

2

= 1

For the next couple examples you may find it useful to review coterminal angles
which can be found in subsection 3.1.3 on page 89.

Example 3.3.2:

Find the six trigonometric functions for θ = −2π
3 .

Solution:

First, notice that θ = −2π
3 is not shown explicitly on the unit circle; however,

it is coterminal with θ′ = −2π
3 +2π= 4π

3 which has the coordinate (−1
2 , −

p
3

2 ).
Using the definitions of the trigonometric functions in section 3.2, we have
the following:

y = sin
4π

3
= −p3

2
,

1

y
= csc

4π

3
= 2

−p3
= −2

p
3

3

x = cos
4π

3
= −1

2
,

1

x
= sec

4π

3
= 2

−1
=−2

y

x
= tan

4π

3
=

−p3

2
−1

2

=p
3,

x

y
= cot

4π

3
=

−1

2
−p3

2

=
p

3

3

Example 3.3.3:

Find the values for sinθ, cosθ, and tanθ of the angle θ = 13π
6 .

Solution:

As in the last example, θ = 13π
6 is not explicitly stated in the unit circle.

Nevertheless, it is a coterminal angle, but which one? To find the cotermi-
nal angle, rewrite 13π

6 as a mixed number.
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13π

6
=

(
13

6

)
π

=
(
2

1

6

)
π

=
(
2+ 1

6

)
π

= 2π+ π

6

Thus, the angle makes one complete revolution and another π
6 which is

our coterminal angle.

sin
13π

6
= sin

π

6
= 1

2

cos
13π

6
= cos

π

6
=

p
3

2

tan
13π

6
= tan

π

6
=

1

2p
3

2

=
p

3

3

Note:
There are several ways to determine
coterminal angles. Another method
to determining the coterminal angle in
Example 3.3.3 is to subtract 2π from the
angle given in this case.

13π

6
−2π= 13π

6
− 12π

6

= π

6

3.3.3 Reciprocal Trigonometric Identities

Trigonometric Functions

Sine of θ: sinθ = y

r
Cosecant of θ: cscθ = r

y

Cosine of θ: cosθ = x

r
Secant of θ: secθ = r

x

Tangent of θ: tanθ = y

x
Cosine of θ: cotθ = x

y

If we refer back to the definitions of the six trigonometric functions which are
shown above for convenience, you may begin to notice a pattern where some of
the trigonometric functions appear to be the reciprocal of another. If you have,
then you are right and these functions are called the reciprocal identities. If
this is not apparent, then lets take a look at the sine function. Since sinθ is
defined as sinθ = y

r , then y = r sinθ. If we replace y in the cosecant (cscθ) with
y = r sinθ then we get:
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cscθ = r

y

cscθ = r

r sinθ

= 1

sinθ

If we do this for the remaining trigonometric functions then we have the fol-
lowing reciprocal identities.

Reciprocal Identities

cscθ = 1

sinθ
secθ = 1

cosθ
cotθ = 1

tanθ

Following this same logic, we can see a relationship between sinθ, cosθ, and
tanθ which are known as the quotient identities.

Quotient Identities

tanθ = sinθ

cosθ
, cotθ = cosθ

sinθ

3.3.4 Trigonometric Functions on the Calculator

Figure 3.23

As we stated before, there are only a handful of angles in which the exact trigono-
metric values can be determined which we often refer to as simply special an-
gles. The rest of the angles must be approximated by use of a calculator. De-
pending on the calculator used, the entry method can differ. For example, if us-
ing a single line display calculator the angle must be entered first before calling
the trigonometric function wanted. As for the multi-line calculator (the type
we’ll show), the entry method is the same as it’s displayed on paper. Some cal-
culators have the ability to display answers in symbolic form such as our special
angles; however, many do not. Figure 3.23 shows the display of cos30◦ in both
symbolic, and approximated/decimal form.

By this point, it’s important that you have a good understanding of what each
trigonometric function represents, and the differences between degree mea-
sure and radian measure. Most calculators are unique when it comes to access-
ing certain settings such as changing degree modes. You’ll need to refer to your
owners manual to become familiar with how to operate your particular calcu-
lator. It’s also important to know that most calculators only have functions for
sine, cosine, and tangent along with their respective inverse functions sin−1,
cos−1, and tan−1 which we cover shortly. Thus, functions for secθ, cscθ, and
cotθ are not typically available. Nevertheless, these three functions are easily
determined in the calculator since they are reciprocals of sinθ, cosθ, and tanθ
respectively.
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Example 3.3.4: – Entering Trig Functions in the Calculator

Find the six trigonometric function values for 37.08◦ precise to the hun-
dredths place.

Solution:

Since 37.08◦ is not one of our special angles, then we’ll have to use the
calculator to approximate the values. Beginning with sine, cosine, and
tangent we have the following calculator output shown in figure 3.24.

sin
(
37.08◦

)= 0.60 cos
(
37.08◦

)= 0.80 tan
(
37.08◦

)= 0.76

To find the values for csc(37.08◦), sec(37.08◦), and cot(37.08◦) we have to
enter them as the reciprocal of sin(37.08◦), cos(37.08◦), and tan(37.08◦)
respectively as shown in figure 3.25.

csc
(
37.08◦

)= 1

sin(37.08◦)
= 1.66

sec
(
37.08◦

)= 1

cos(37.08◦)
= 1.25

cot
(
37.08◦

)= 1

tan(37.08◦)
= 1.32

Figure 3.24

Figure 3.25

Notice that the entry method in the HP calculator used in this text is displayed
in the same textbook manner. This entry method is not uncommon with most
multi-line scientific calculators.

Figure 3.26

Note: Reciprocal identities such as cscθ

can be entered as
1

sinθ
, or (sinθ)−1.

Keep in mind that sin−1θ 6= (sinθ)−1.

Example 3.3.5: – Entering Trig Functions in the Calculator

Find the value for sin(1.618π) accurate to four significant digits.

Solution:

This calculation is the same as that in the previous example with the ex-
ception that the mode must be changed to radians. Each calculator is
different; however, if you are using the HP Prime, or its emulator, then
the fastest way to change modes is to touch the top right portion of the
screen where it shows an angle symbol. When you touch that portion of
the screen, a small window will pop up allowing you to select the symbol�� ��]π for radian mode. After changing modes, we enter the function just

as it is printed and select
�� ��Enter . The result is shown in figure 3.26.

sin(1.618π) =−0.9321

Example 3.3.6: – Entering Reciprocal as x−1

Find csc(2.7183) correct to 3 significant digits.

Solution:

First, note that the value 2.7183 is not identified as a denominate number
(no unit of measurement identified), and in this case the value 2.7183 is
automatically assumed to be in radians (not all radian measures have the
symbol π associated with it).
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Though the directions do not specify how to calculate the answer, we’ll
take a different approach when entering the function in the calculator.
The following are the key strokes used:

�� ��(
�� ��sin 2.7183

�� ��)
�� ��x y

�� ��(
�� ��+/-

�� ��1
�� ��)

�� ��Enter

First, note that the exponent key can appear as the key symbol
�� ��x y , or�� ��∧ depending on the calculator used. If entered correctly you should get

the following result.

csc(2.7183) = (sin(2.7183))(−1) = 2.434

3.3.5 Inverse Trigonometric Functions

Until now, we have determined the values of the trigonometric functions given
an angle, or two or more sides. What if we were given two, or more, sides
and want to know the angle? The inverse trigonometric function keys on the
calculator is what is used to determine the angles of a right triangle. The in-

verse trigonometric function keys typically appear as
�� ��sin−1 ,

�� ��cos−1 , and�� ��tan−1 on most calculators and are pronounced inverse sine, inverse cosine,
and inverse tangent of a respectfully. Due to the notation confusion of, say
sin−1 a, inverse functions where the notation is easily confused with the recip-
rocal function, say (sinθ)−1, some calculators use an abbreviated form of the

arcus trigonometric functions such as
�� ��asin ,

�� ��acos , and
�� ��atan which refer

to arcsine, arccosine, and arctangent of a respectfully. These arcus functions
are simply another name for the inverse trigonometric functions.

y

x
3

θ

5
4

Figure 3.27

Example 3.3.7:

What is the angle measure for θ in figure 3.27 rounded to hundredths of a
degree?

Solution:

Since we already know the lengths of all the sides, then we could use any
of the inverse trigonometric functions to determine θ. In this case, since
one function is just as arbitrary as the next, we’ll show all three inverse
trigonometric functions to find θ; and verify that the results are the same.
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sinθ = y

r
⇒ θ = sin−1

( y

r

)
sinθ = 4

5
⇒ θ = sin−1

(
4

5

)
= 53.13◦

cosθ = x

r
⇒ θ = cos−1

( x

r

)
cosθ = 3

5
⇒ θ = cos−1

(
3

5

)
= 53.13◦

tanθ = y

x
⇒ θ = tan−1

( y

x

)
tanθ = 4

3
⇒ θ = tan−1

(
4

3

)
= 53.13◦

Thus, all three inverse functions gave the same result as we expected.

Example 3.3.8:

Find the angle for the trigonometric function tanθ = 1.532 rounded to two
decimal places in degrees .

Solution:

It’s not necessary to rewrite 1.532 as a fraction when using inverse func-
tions.

tanθ = 1.532

θ = tan−1 1.532

= 56.87◦

Inverse trigonometric functions are used for determining angles; however, you
must also be familiar with which angle you want. In the above example, we
were asked to determine θ for tanθ = 1.532 which we did, but what if we knew
the angle resided in the 3rd quadrant. In the third quadrant both x, and y values
are negative and the ratio of two negative numbers would be positive, thus it’s
entirely possible that the coordinate was in Q1 or Q3. If we knew the angle is in
Q3, then we would have to add 180◦ to the answer the calculator gave (These
two angles are illustrated in figure 3.28). The reason for this is comes down to
the range of values for which tan−1 is defined; however, a deeper understanding
of functions and their inverses is needed to explain further which we will not go
into in this chapter. For now, it’s sufficient to recognize the quadrant you’re in,
and to know when to add 180◦, and when not to.

y

x

56.87◦236.87◦

Figure 3.28
The easiest method is to know which quadrant the angle is in, and the the
range of values for which the calculator will give you answers. For instance,
for θ = sin−1, the calculator will only give results from −π

2 to π
2 , or −90◦ ot 90◦,

for θ = cos−1 the calculator give values between 0 and π, or 0◦ and 180◦, and
θ = tan−1 the calculator gives values between −π

2 to π
2 , or −90◦ to 90◦. Below
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is a graphical representation (figure 3.29) for the range of values for each of the
inverse trigonometric functions just described.

y

x

cos−1

sin−1

tan−1

Figure 3.29: Ranges of Inverse Trigonometric Functions

Example 3.3.9:

Find the angle (in degrees) of the line that begins at the origin and has its
terminal point at (−3,−4).

Solution:

First, note that the terminal point lies in quadrant III since both x and y
coordinates are negative. This means that we’ll have to add 180◦ to the
angle given from the calculator.

tanθ = y

x

θ = tan−1
( y

x

)
= tan−1

(−4

−3

)

= 180◦+ tan−1

(−4

−3

)
add 180◦ since the calculator
will intepret tan−1

(−4
−3

)
as

tan−1
( 4

3

)
≈ 233.13◦
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3.4 The Right Triangle

3.4.1 Parts of a Right Triangle

A

B

C
b

a
c

Figure 3.30

To solve for the remaining components (sides and angles) of any triangle we
must be given at least three parts where one of those parts must include at least
one side. Having all angles of a triangle tells us nothing about the length of the
sides of a triangle. The side opposite the 90◦ angle is always the longest side of
the right triangle and is called the hypotenuse. The other two sides are referred
to as the legs. When using Latin letters to denote the parts of a triangle we use
uppercase letters to reference the angles such as (A, B , C , ...), and correspond-
ing lowercase letters to denote the sides (a, b, c, ...) opposite the angle. Figure
3.30 illustrates a right triangle labelled with Latin letters.

Considering the fact that we recently used properties of right triangles, and
the Pythagorean theorem to solve for the x, and y coordinates along a circle
of radius 1, then it may not come as a surprise that we can extend the use of
trigonometric functions to encompass all right triangles regardless of the size
of the hypotenuse. We’ll begin by naming the sides of the triangle as opposed
to simply referencing the legs as side x, or y ; rather we’ll refer to the sides with
respect to the angle of interest which is known as the angle of reference (not to
be confused with the reference angle). The following two figures illustrates this
with θ, and γ being the angle of reference, and the side opposite the angle is
abbreviated as opp, the side adjacent to the angle is abbreviated as adj, while
the hypotenuse has the abbreviation hyp.

adj

opp
hyp

θ

opp

adj
hyp

γ

Figure 3.31

By labeling the triangle based upon the angle of reference, then the orientation
of the right triangle is not relevant. For instance, if you study figure 3.32 you will
see that the right triangle is simply rotated instead of being shown in standard
position, yet the properties of trigonometry will still apply. With this labeling,
the following six trigonometric functions are defined as the following:

adj opp

hyp

θ

Figure 3.32

Trigonometric Functions

Sine of θ: sinθ = opp

hy p
Cosecant of θ: cscθ = hy p

opp

Cosine of θ: cosθ = ad j

hy p
Secant of θ: secθ = hy p

ad j

Tangent of θ: tanθ = opp

ad j
Cosine of θ: cotθ = ad j

opp
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Example 3.4.1: – Trigonometric values for complementary angle

Find the values for sinθ, cosθ, and tanθ for the following right triangle.

6

8
10

θ

Solution:

First notice that θ is in the upper right corner of the triangle. The side with
length 6 is opposite θ, while the other leg of length 8 is adjacent to θ.

sinθ = opp

hy p
= 6

10
= 4

5

cosθ = ad j

hy p
= 8

10
= 4

5

tanθ = opp

ad j
= 6

8
= 3

4

586

810
1000

α

Figure 3.33

0.586

0.810
1

α

Figure 3.34

Example 3.4.2: – Trigonometric function equal to a decimal value

If sinα = 0.810, then what are the values of the other five trigonometric
functions?

Solution:

The best approach is to draw a right triangle with the information given.
You’ll most likely notice that sinα= 0.810 is not in fractional form as sinα
is defined; however, we could write 0.810 as either 810

1000 as shown in figure
3.33, or as 0.810

1 as shown in figure 3.34. It doesn’t matter which way we
choose as the result will be the same.

The Pythagorean theorem was used to find the values adjacent to α and
was rounded to the thousandths place. For this reason, all of the following
values are approximations.

cosα= 586

1000
= 0.586 sinα= 810

1000
= 0.810

tanα= 810

586
= 1.382 cotα= 586

810
= 0.723

cscα= 1000

810
= 1.235 secα= 1000

586
= 1.706
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A

B

C
9.3

a
18

Figure 3.35

Example 3.4.3:

Solve the remaining parts of the right triangle (4ABC ) in figure 3.35.

Solution:

The following table shows what is known and what is needed to be found.

Sides Angle

a = A =
b = 9.3 B =
c = 18 C = 90◦

We can determine side a from the Pythagorean theorem where a2 = c2 −
b2 = (18)2 − (9.3)2 = 237.51, thus a = p

237.51 ≈ 15.41. Now that we have
the lengths of all sides, we can determine either angle, ∠A or ∠B first. Be-
ginning with ∠A, we could choose any of the inverse trigonometric func-
tions to determine this angle, however we want to avoid using the side a
we just found since its result was approximated, thus we’ll use inverse co-
sine. Entering cos−1

( 9.3
18

)
exactly as it is shown here in the calculator will

give A ≈ 58.89◦. Since the sum of all angles in any triangle is 180◦, then
B ≈ 180◦− 90◦ = 58.89◦ = 31.11◦. We can now complete the table shown
below.

Sides Angle

a = 15.41 A = 58.89◦
b = 9.3 B = 31.11◦
c = 18 C = 90◦

In the above example 3.4.3 there are several options in the calculator to speed
up calculations. For instance, we could have used the storing option to save
the result of cos−1

( 9.3
18

)= 58.8911◦ as opposed to rounding the result and com-
pounding the error. Another method is to use the arrow keys to scroll up to the

result you want, or use the
�� ��ANS button/option to recall the previous answer.

In any case, it’s best to avoid rounding until the final result.



106 CHAPTER 3. INTRODUCTION TO TRIGONOMETRY

3.5 Applications of Trigonometry

3.5.1 Applications of Right Triangles
angle of elevatio

n

angle of depression

direction of horizon

Figure 3.36

There are many applications for right triangle trigonometry, and with that there
some terms you must be familiar with. The next example refers to a term called
the angle of depression. The angle of depression is the angle that is produced
when the object of interest is below the horizontal line created by the point
of observation and the horizon where the point of observation represents the
vertex. The angle of elevation is produced when the object of interest is above
the horizontal line created by the point of observation and the horizon. Figure
3.36 illustrates both the angle of elevation and the angle of depression where
the point of observation is represented by the persons viewpoint.

Example 3.5.1: – Angle of depression

A ships’ radar has detected a submarine at a distance of 100m with an
angle of depression of 33◦ as shown in the figure below. How far is the
submarine from the surface of the water?

33◦

100m
d

Solution:

In order to determine the submarines depth, we will have to make use of
one of the trigonometric functions. Three of the trigonometric functions
are reciprocals of the other three, so we can just restrict our choices down
to sine, cosine, and tangent.

Since we’re looking for d , then we must use sine since the information
given deals with the side opposite 33◦, and the hypotenuse.

opp

hy p
= sin

(
33◦

)
d

100
= sin

(
33◦

)
avoid approximating sin(33◦)
until the end to avoid
intermediate rounding errors.

d = 100sin
(
33◦

)
≈ 54

The submarine is approximately 54 meters from the surface.
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9,
92

0
km

/h

x

60◦

Figure 3.37

When dealing with applications involving moving objects we are primarily in-
terested in the behavior of an object at a specific point in time or position. For
instance, the next example asks us to determine the ground speed of a rocket
at a specific point in time. Ground speed is the speed along the horizontal as
described in section 1.2 on page 14.

Example 3.5.2: – Angle of elevation

The first stage of the Saturn V rocket burned for 2.5 minutes reaching a
height of 68km traveling at a speed of 9,920km/h as illustrated in figure
3.37. If the Saturn V rocket was oriented at an angle of elevation with re-
spect to the observers horizon, then what would the ground speed of the
Saturn V be at the point of separation of the first stage rocket with respect
to the observer?

Solution:

First, in some problems there may be some information that is not needed
to solve for what is asked. In this case the height of the rocket at the
moment of separation of the first stage is not relevant to determine the
ground speed of the rocket. In addition, you may have already noticed
that the hypotenuse of the triangle in the illustration is labeled as a rate
instead of a constant which is okay as well. This just means that the re-
sult that we determine for horizontal will also be a rate which is what we
want to determine. Now, we just need to choose the correct trigonometric
function which gives us what we want based upon the information given.
In this case cos60◦ is the function we want since the horizontal value of x
(adjacent side) is what we’re looking for.

x

9,920 km/h
= cos60◦

x = 9,920cos
(
60◦

)
km/h

= 4,960 km/h

Thus, the ground speed is 4,960 km/h

The above example was setup using the concept of vectors; however, the use of
vectors is explained in much more detail in chapter ??. The problem could also
have been setup using the cosine function to determine the horizontal distance
traveled then converted to the rate at that point. This method ultimately gives
the same result with a little more intermediate work. The method in which we
solved this problem is of course correct, but the diagram, using vectors, would
have been portrayed slightly different which we’ll discover in chapter ??.

The next example revisits a problem from section 2.5 where we determined the
height of a tower using similar triangles. Here we’ll use trigonometry to solve
for the height of the same tower where the angle of elevation and the length the
shadow makes with the ground is known. In practice, the tool used to deter-
mine the angle of elevation, or depression, is called an inclinometer or clinome-
ter. These types of tools range anywhere from a crude setup from a protractor,
string, and plumb bob (figure 3.38) to digital high precision instruments.
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10

170
1800

Figure 3.38: Protractor
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31.45◦

389′2′′

Figure 3.39

Example 3.5.3:

The length of the shadow that the a tower makes along level ground is
389′2′′. The angle of elevation to the top of the tower from the end of the
shadow is 31.45◦ which is shown in figure 3.39. What is the height of the
tower to the nearest inch?

Solution:

In most cases it’s helpful to redraw the diagram without all the unneces-
sary information such as the tower itself in this case, but since we are only
looking for the height of the tower it’s obvious what this diagram would
look like based upon the illustration in figure 3.39.

We are looking for the height of the tower which is opposite our angle, and
are given the length of the shadow the tower makes which is the adjacent
side to the angle of elevation. Thus, we need to use the tangent function
to determine the height.

h

389+2/12
= tan31.45◦ 2/12 or 1/6 is 2” converted to

feet, but is also a
non-terminating decimal. To
avoid rounding error we’ll
leave it as 1/6 till the final
calculation.

h = (389+1/6)tan31.45◦

= 238.015′

= 238.015(12) Convert to inches

= 2,856.18′′

To the nearest inch, the tower is approximately 2,856 inches tall.

Example 3.5.4:

An observer from a hot air balloon with an altitude of 240’ spotted a house
and a barn. The angle of depression to the house is 74.3◦ while the angle
of depression to the barn is 41.6◦. What is the distance between the house
and barn to the nearest foot?

74.3◦
41.6◦

240′
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Solution:

Begin by redrawing the diagram as shown in figure 3.40 and label what is
known as well as what is needed. To find the distance from the house to
the barn, we must find the horizontal distance of both the house and barn
from the balloon and take their difference. To determine the horizontal
distances in this case we’ll have to use the tangent function since the hor-
izontals are adjacent to the angles given.

tan74.3◦ = 240

d1
, tan41.6◦ = 240

d2

d1 = 240

tan74.3◦
, d2 = 240

tan41.6◦

d1 = 67.461′ , d2 = 270.319′

Thus the distance between the house and barn is d2−d1 = 67.461′−270.319′ =
203′ rounded to the nearest foot.

240′240′

d2
d1

d2 −d1

41.6◦

74.3◦

Figure 3.40

4-to-1 Rule:
In construction, the 4-to-1 rule states
that for every 4 vertical feet a ladder
is placed against a wall the base of
the ladder should be placed one foot
from the wall. For instance, if a ladder
reaches 12 feet up a wall, then the base
of the ladder should be placed at three
feet from the wall.
If the base of the ladder is too close to
the wall then the there is a risk for the
top of the ladder to pull away from the
wall as it is being used. If the base of
the ladder is too far from the wall then
there is risk the base will slide further
out from the wall as it’s being used. In
either case, there is risk for injury if a
ladder is not properly set.

h

x

18

90◦

Figure 3.41

Example 3.5.5:

How far should the base of an 18 foot ladder be placed from a wall based
on the 4-to-1 rule?

Solution:

First, notice the illustration in figure 3.41 for the ladder/wall relationship.
If we look closely enough, you’ll notice that there doesn’t seem to be enough
information in the diagram to determine the value for x since the vertical
height h wasn’t given. Rather, all we have is the length of the ladder with
the other two legs of the right triangle unknown. To solve the remaining
parts of any triangle, there must be at least three pieces of information
known about the triangle. In this case, we only know two; however, we do
have the details of the 4-to-1 rule. If you study the illustration below of
several ladders following the 4-to-1 rule then you’ll notice that the angle
the ladder makes with the ground is the same since they all form similar
triangles.

1

4

θ

For this reason, we can determine the angle of elevation the ladder makes
with respect to the ground using the 4-to-1 rule since all the angles would
be the same which is illustrated as a right triangle in the figure above.
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tanθ = 4

1

θ = tan−1(4)

≈ 75.96◦

Since we are looking for the adjacent side, we’ll use the cosine function to
solve for x when the hypotenuse is 18.

x

18
= cos75.96◦

x = 18cos75.96◦

≈ 4.3668′

The base of an 18’ ladder should be placed approximately 4’4” from the
wall.

h

x 10,000−x

A
36◦ C

20◦

B

Figure 3.42

Example 3.5.6: – Solving Trigonometric Equations

Two radar stations located 10 km apart both detect a UFO located between
them. The angle of elevation measured by the first station (A) is 36◦ and
the angle of elevation measured by the second station (C ) is 20◦. What is
the altitude (h) of the UFO? See figure 3.43 below.

IA I C

hc
a

10,000 m

36◦ 20◦

B

Figure 3.43: UFO and radar stations

Solution: To begin, we need to redraw a digram that allows us to determine
two right triangles where the distance between the radar station A and
the UFO will be denoted as x, and the horizontal distance between radar
station B will be denoted as 10,000− x (see figure 3.42). With this new
labeling we can setup two right triangles with common variables. In each
of the following expressions both x and h refer to the same values.

tan36◦ = h

x
and tan20◦ = h

10,000−x

h = x tan36◦ and h = (10,000−x) tan20◦

Since both expressions are equal to h, then the expressions are equal to
each other. This will leave us with one equation where we must solve for
x.
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x tan36◦ = (10,000−x) tan20◦

x tan36◦ = 10,000tan20◦−x tan20◦ distribute tan20◦ throughout
(10,000−x).

x tan36◦+x tan20◦ = 10,000tan20◦ add x tan20◦ to both sides

x(tan36◦+ tan20◦) = 10,000tan20◦ factor x out of the right side of
the equation

x = 10,000tan20◦

tan36◦+ tan20◦

≈ 3337.61m

Now that we have x we can substitute its value into either expression above
to determine h. Choosing the simplest expression we have h = x tan36◦ =
3337.61tan36◦ = 2424.91m. Therefore the height of the UFO is approxi-
mately 2425 meters.

3.5.2 Applications with Circular Motion

One application of radian measure occurs when we deal with velocity of an ob-
ject traveling in a circular motion, or simply rotational motion. To review radian
measure see sections 2.1.3 and 3.1.2. When determining the distance of an ob-
ject traveling in a straight line, we use the formula d = v t which is distance
equals velocity times time. When determining the distance of an object travel-
ling in a circular motion, recall that the arc length is defined as s = rθ where θ
is in radians, r is the radius of the arc, and s is the distance around the arc. If we
let v represent the velocity or rate, then s = v t which is also distance equals ve-
locity times time. After substituting s = rθ we have rθ = v t . From this equation
we can solve for any unknown variable. For example, solving for velocity we get

v = rθ

t
.

Example 3.5.7: – Linear Velocity

A wheel with a radius of 20” spins at the rate of 7 revolutions every 1.03
seconds. What is the velocity of the wheel?

Solution:

As shown above, v = rθ

t
. We know t = 1.03s, r=20”, and θ = 2π(7) = 14πwe

have the following:

v = rθ

t

v = 20(14π)i n

1.03s

= 854.025 i n/s
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3960mi

Figure 3.44: Radius of Earth

Example 3.5.8: – Linear Velocity

The radius of the earth is 3960 miles and makes one revolution every 24
hours approximately. What is the velocity at a point along the equator in
miles per hour?

Solution:

Since we are looking for the velocity along the equator then we can con-
tinue to use the radius of the earth.

v = rθ

t

v = 3960(2π)mi

24h

= 1036.73 mi /h

A spot on the equator has as a velocity of 1036.73 mi/h.

Recall from earlier that the velocity of an object moving in circular motion is

given by v = rθ

t
, which is equivalent to v = r

(
θ

t

)
. The ratio of

θ

t
is what’s called

angular velocity, denoted with the lowercase Greek letter omega (ω), is the rate

at which an object rotates through an angle θ in time t . Thus we have ω = θ

t
.

Linear velocity defined earlier in this section as v = rθ

t
can also be written as

v = rω.

Example 3.5.9: – Angular Velocity

A certain type of aluminum requires a cut speed of 40 feet per minute to
prevent damaging both the material, and cut tool. If round aluminum
stock is to be turned on a machining lathe, and has a diameter of 6 inches,
at what rpm should the lathe be set to rotate?

Solution:

We know v = rω, and need to solve for the angular velocity ω which is

ω = v

r
. In the past, the units of measurement have been omitted from

most calculations, but when multiple units of measurement are used it is
not recommended to omit them.

ω= v

r

= 40 f t/mi n

3i n
notice that we need to either
convert 3” to feet, or 40’ to
inches.

= 40 f t/mi n

0.25 f t
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ω= 160 ��f t

��f t ·mi n
Simplify the units and cancel
like units.

= 160
r ad

mi n
ω is in radians by default
though it can be converted to
degrees if needed at this
point. We don’t want to
convert to degrees in this case.

Now, we just need to determine the number of revolutions per minute.
Since 1 revolution is equal to 2π radians, we have the following:

ω= 160
r ad

mi n

= 160
��r ad

mi n
· 1 rev

2π��r ad

= 160 rev

2π mi n

≈ 25.46 rpm

Therefore the lathe needs to be set at 25.5 rotations per minute (rpm).
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4.1 Vectors in the Plane

4.1.1 Introduction

We deal with many quantities that are represented by a number that shows their
magnitude. These include speed, money, time, length and temperature. Quan-
tities that are represented only by their magnitude or size are called scalars .
When you travel in your car and you look at the speedometer it tells you how
fast you are going but not where you are going. This is a scalar value and is
called the speed.

A vector is a quantity that has both a magnitude (size) and a direction. To de-
scribe a vector you must have both parts. If you know that you are traveling at
150 mph north then that would be a vector quantity and it is called the velocity.
It tells you how fast you are traveling, speed is 150 mph, as well as the direction,
north.

4.1.2 Vector Representation

−*v =−−*
PQ

Q

P

Figure 4.1: Equivalent Vectors
When we write a vector there are two common ways to do it. If we want to talk
about “vector v” we can either write the v in bold or write the −*v with an arrow
over it. In this text we will most often use the arrow notation but do be aware
that the bold notation is also common.

To describe a vector we need to talk about both the magnitude and direction.
The magnitude of a vector is represented by the notation

∥∥−*v ∥∥. The direction
can be described in different ways and depends on the application. For exam-
ple you might say that a jet is traveling in the direction 10◦ north of east, or a
force is applied at a particular angle or with a particular slope. A vector can be

represented by simply an arrow: in Figure 4.1 the vector −*v =−−*
PQ which starts at

point P called the initial point, and ends at point Q called the terminal point
has magnitude equal to its length (

∥∥−*v ∥∥) and direction as indicated. The vector
can be moved around in the plane as long as the length and direction are un-
changed. All the vectors in Figure 4.1 are equivalent because they all have the
same length and point in the same direction. When the vector is drawn this way
the length is always the magnitude. An accurate picture is necessary to accu-
rately describe a vector this way. Sometimes it is called a directed line segment.

x

y

−*u =−−*
PQ

P

Q

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

4

5

6

7

−*v =−*
RS

R

S

Figure 4.2

Example 4.1.1:

Show that the directed segment −*u which starts at P (−3,−2) and ends at
Q(1,4) is equivalent to the directed segment −*v which starts at R(3,1) and
ends at S(7,7).

Solution:

To show that the two vectors are equivalent we need to show that they
have the same length and direction as illustrated in Figure 4.2. Using the
distance formula we can see they have the same length.

∥∥−*u ∥∥=
√

(1− (−3))2 + (4− (−2))2

=
√

42 +62

= 2
p

13
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∥∥−*v ∥∥=
√

(7−3)2 + (7−1)2

=
√

42 +62

= 2
p

13

Both of these vectors have the same direction because they are both point-
ing to the upper right and have the same slope:

∆y

∆x
= (4− (−2))

(1− (−3))
= (7−3)

(7−1)
= 3

2

Thus they are equivalent.

4.1.3 Graphical Addition of Vectors

Polygon Method Ï

−*u

−*v−*u
+
−*v

Figure 4.3

−*u

−*v
−*u

+
−*v

=
−*v

+
−*u

−*v

−*u

Figure 4.4

There are two common methods to adding vectors graphically. The first is known
as the polygon method. To keep things simple, we’ll begin with the addition of
two vectors. The polygon method shifts either of the two vectors such that the
initial point of one vector is at the same location as the terminal point of the
other as illustrated in figure below. It’s important to note that both the direc-
tion and magnitude is unchanged in this relocation step. The vector sum, say
−*u +−*v , is typically denoted as

−*
R , or in boldface R, which is called the resultant

vector, or just resultant; thus we have −*r =−*u +−*v .

−*u
−*v

1) Add vectors −*u and −*v

−*v−*u

2) Shift either −*u or −*v , so that
they’re tail to head

−*v

−*u −*
R

3)
−*
R =−*u +−*v

Figures 4.4 illustrates the commutative property of vector addition. Since the
location of the vectors is not relevant, then regardless which vectors initial point
is shifted to the terminal point of the other vector the resultant vector is the
same.

When adding three or more vectors as illustrated below in Example 4.1.2, the
process is done in a similar manner. Each vectors initial point is placed at the
terminal point of the previous vector, and the resultant vector begins at the ini-
tial point of the first vector while the terminal point is the terminal point of the
last vector shifted. The order of the vectors shifted does not matter.

Example 4.1.2: – Vector addition - polygon method

−*u

−*v
−*w

−*u

−*v

−*w−*
R

−*
R =−*u +−*v +−*w

−*v
−*u

−*w−*
R

−*
R =−*v +−*u +−*w
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Notice in Example 4.1.2 that the magnitude and direction of the resultant vec-
tor is unchanged regardless of the order in which the vectors −*u , −*v , and −*w are
added.

Parallelogram Method Ï
The other method, which is typically convenient when adding only two vectors
at a time, is called the parallelogram method. This method requires the posi-
tion of two vectors such that they share the same initial point, thus the vectors
become two sides of a parallelogram. The resultant is the diagonal of the paral-
lelogram that shares the same initial point as illustrated in Figure 4.1.3 below.

−*u
−*v

1) Add vectors −*u and −*v

−*v

−*u

2) Shift −*u or −*v , so they
share the same initial point

−*v

−*u

3) Complete the
parallelogram

−*v

−*u diagonal

4)
−*
R = diagonal

Figure: 4.1.3

4.1.4 Difference of two Vectors

Recall from section 4.1 that a negative vector simply changes the direction of
the vector by exactly 180◦. To take the difference between two vectors, say−*u −−*v , we changed the direction of −*v by adding 180◦ to its existing angle.
Graphically, we simply drew the arrow on the other side of the vector, placed
them tail to head, then drew a vector beginning at the initial point of −*u and
ending at the terminal point of −*−v as illustrated in the step-by-step graphical
approach in Figure 4.5 below.

−*v −*u

1) Subtract −*v from −*u ,
or −*u −−*v

−−*v −*u

2) Change direction
of −*v

−*u
−−*v

3) Shift −*u and −*v tail
to head

−*u
−−*v−*

R

5) Draw the resultant
vector

−*
R

−*v
−*u

−*
R

6) Another way

Figure 4.5: Difference of two vectors

Notice in step 6 labelled “Another way” that the resultant vector appears to have
both the same magnitude and direction as the resultant in stop 5), yet the vec-
tors in step 6 aren’t drawn tail-to-end. This is not a coincidence, rather studying
Figure 4.6 will help convince you. Thus, the law of cosines can be used to deter-
mine the magnitude of the difference of two vectors in standard position since
the angle between them at the origin is either given or relatively easy to deter-
mine. However, care should be taken when determining the direction of the
resultant vector when calculated this way (see Figure 4.7)

−*u

−*v

−*u − −*v

−−*v

−*u − −*v

Figure 4.6: Difference of vectors in stan-
dard position

−*u

−*v

−*u − −*v

−*u

−*v

−*v − −*u
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Figure 4.7

Example 4.1.3:

For the following vectors −*u and −*v find 2−*u −−*v .

−*u
−*v

Solution:

Since we are subtracting, we can redraw the vectors with the direction of−*v reversed.

−*u
−*v

Now, we just add them together by placing them tail-to-head as before.

2−*u
−−*v−*

R

4.1.5 Scalar Multiple of Vectors - Graphically

If vector −*u is in the same direction as vector −*v where −*u has a magnitude n
times that of −*v , then −*u = n · −*v , and the vector n−*v is called the scalar mul-
tiple of vector −*v . In other words, a scalar multiple is a constant multiple that
stretches or contracts a vector by a scale factor of n (see Figure 4.8). In the in-
stance that n is negative the direction of the vector is reversed, or rotated 180◦.

−*u
2−*u

3−*u −3−*u

Figure 4.8

Example 4.1.4: – Scalar multiple

For the following vectors −*u and −*v find 2−*u +3−*v .

−*u −*v

Solution:

As stated before, adding vectors graphically requires precision in their place-
ment. This is especially true when adding scalar multiples of vectors. The
use of graph paper will help. Now, just redraw the vectors end-to-end, but
with their respective scalar multiples.
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2−*u

3−*v

2−*u

3−*v−*R = 2
−*u +3

−*v
It’s not necessary to draw the vectors
multiple times. In Example 4.1.4 it was
shown for explanation purposes; how-
ever, though not necessary it some-
times helpful.
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4.2 Vector Components

4.2.1 Components of a Vector

x

y

−*v

−*v x , x component

−*v y , y component

θ

〈vx , vy 〉

Figure 4.9: Vector Components

Note:
The x-component and y-component
are sometimes referred to as the hori-
zontal component and the vertical com-
ponent respectively.

Up to this point all the vectors introduced have been defined graphically as a
directed line segment. Using diagrams to illustrate, and combine vectors is very
useful when developing an understanding of vectors, but it’s not practical when
accuracy is needed. In this section we look at other methods to achieve much
more accurate results when combining vectors.

A vector drawn starting at the origin is in standard position as shown in Figure
4.9. A vector in standard position has initial point at the origin (0,0) and can
be represented by the endpoint of the vector (a,b). This is known as represent-
ing the vector by components: −*v = 〈a,b〉. It is common to see this written as−*v = 〈vx , vy 〉. See Figure 4.9. Notice the use of “angle brackets” 〈 〉 to write the
vector. This distinguishes it from the point at the end of the vector. Writing a
vector as components is generally preferable because it is easier to perform cal-
culations with components rather than directed line segments. Also, while all
the work in this book is with two dimensional vectors you can also write vectors
in three or even more dimensions. It is very difficult to draw a directed segment
in three dimensions while writing it with components is quite straight forward.

If you want to write −*v from point P to point Q then −*v = P −Q. For example in

Example 4.1.1 −*u = −−→
PQ = (1,4)− (−3,−2) = 〈4,6〉. It is important to subtract in

the correct order. It is always “end point” minus “starting point”. If you subtract
in the wrong order you end up with a vector that has the same length but points
in the opposite direction.

Component Form of a Vector

The component form of a vector −*v with initial point P (p1, p2) and end
point Q(q1, q2) is

−−→
PQ = 〈q1 −p1, q2 −p2〉 = 〈vx , vy 〉 =−*v

The magnitude of −*v ,
∥∥−*v ∥∥, is found by the Pythagorean theorem.

∥∥−*v ∥∥=
√

(q1 −p1)2 + (q2 −p2)2 =
√

(vx )2 + (vy )2

Example 4.2.1:

Find the component form of the vector −*v that starts at P (1,2) and ends at
Q(−3,4). Find the length of −*v .

Solution:

−*v = 〈q1 −p1, q2 −p2〉
= 〈(−3−1), (4−2)〉
= 〈−4,2〉
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The length:

∥∥−*v ∥∥=
√

(vx )2 + (vy )2

=
√

(−4)2 + (2)2

=p
20 =p

4
p

5

= 2
p

5

See Figure 4.10 for an illustration of this problem.

x

y

−*v = 〈−4,2〉
P

Q

−4 −3 −2 −1 1 2−1

0

1

2

3

4

5

Figure 4.10

4.2.2 Vector Operations - by Components

There are mathematical operations that we can do with vectors. The two most
common are multiplication by a scalar and vector addition . Recall that a
scalar is a number. If you want to multiply a vector −*v by a scalar n there are
two ways to think about it. Multiplying by the scalar n does not change the
direction of the vector but makes it longer or shorter by a factor of n. If you
have your vector written in components −*v = 〈vx , vy 〉 then each component is
multiplied by n:

n ·−*v = n · 〈vx , vy 〉 = 〈n · vx ,n · vy 〉

Example 4.2.2: – Scalar multiple of Vector Components

Find the result when −*u = 〈6,−1〉 is multiplied by 7.

Solution:

7−*u = 7〈6,−1〉 = 〈42,−7〉

Example 4.2.3: – Scalar multiple of Vector Components

Find the result when −*u = 〈6,−1〉 is multiplied by −1.

Solution:

(−1)−*u =−−*u = (−1)〈6,−1〉 = 〈−6,1〉

Note that −−*u is the same vector as −*u but pointing in the opposite direc-
tion. You can see this if you sketch both on the same set of axes.

If the vectors are written as components you can add the x components and the
y components separately. The component operations are summarized below.
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Vector Addition and Scalar Multiplication

Given vectors −*u = 〈ux ,uy 〉 and −*v = 〈vx , vy 〉 and scalar n then the sum
or difference of −*u and −*v is given by

−*u +−*v = 〈ux ,uy 〉+〈vx , vy 〉 = 〈ux + vx ,uy + vy 〉
−*u −−*v = 〈ux ,uy 〉−〈vx , vy 〉 = 〈ux − vx ,uy − vy 〉

The scalar multiple of k and −*v is

n ·−*v = n · 〈vx , vy 〉 = 〈n · vx ,n · vy 〉

Example 4.2.4: – Vector Addition and Scalar Multiplication by Compo-
nents

Let −*u = 〈1,−2〉 and −*v = 〈−4,2〉, and find

a) 3−*u +−*v
b) −*u −−*v
c) −*v −2−*u

Solution:

To add these we need to add the corresponding components. The order
of operations is still valid here, perform the scalar multiplication first and
then the vector addition.

a) 3−*u +−*v = 3〈1,−2〉+〈−4,2〉 = 〈3,−6〉+〈−4,2〉 = 〈−1,−4〉

The solution is also shown in Figure 4.11 (a)

b) −*u −−*v = 〈1,−2〉−〈−4,2〉 = 〈5,−4〉

To do this with arrows on paper it is easiest to draw −−*v and then
add that to −*u . Remember that −−*v is the same as −*v but the arrow is
on the other end of the vector. The solution is shown in Figure 4.11
(b) Notice that we can add in either order, the dotted vectors are the
result of −−*v +−*u

c) −*v −2−*u = 〈−4,2〉−2〈1,−2〉 = 〈−4,2〉+〈−2,4〉 = 〈−6,6〉

Be careful with the sign when multiplying by the −2. The solution is
shown in Figure 4.11 (c). Notice that we can add in either order, the
dotted vectors are the result of −2−*u +−*v
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x

y

3−*u

−*v

3−*u +−*v

−3 −2 −1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

0

1

2

(-1,-4)

(3,-6)

a) 3−*u +−*v

x

y

−*u

−−*v

−−*v
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c) −*v −2−*u

Figure 4.11: Illustrations for Example 4.2.4

4.2.3 Trigonometric Derived Vector Components

x

y

−*v

θ

〈vx , vy 〉

−*v y

−*v x

Figure 4.12: Vector Components

In application, many vectors are given in the form of a direction and a scalar
quantity which we depict to be represented as the magnitude. Thus, the hori-
zontal and vertical components of the vector are not usually given. Neverthe-
less, the horizontal and vertical components can be determined given the di-
rection and magnitude of a vector. The initial points of these vector compo-
nents are always located at the origin as illustrated in Figure 4.12.

When we stop to consider that a vector drawn in standard position (initial point
at the origin) is simply a directed line segment, then it’s not too difficult to vi-
sualize that, nearly, any vector can represent the hypotenuse of a triangle. Thus
the magnitude of the x, or horizontal, component is determined by

∥∥−*v x
∥∥ =∥∥−*v ∥∥ · cosθ, and the magnitude of the y , or vertical, component is determined

by
∥∥−*v y

∥∥ = ∥∥−*v ∥∥ · sinθ which is shown below. The one exception to this trian-
gular visualization is if the direction of the vector is a multiple of 90◦ which
doesn’t create a triangle; however, the expressions just described still provides
the correct values for the components in those cases.

x

y

−*v

−*v x , x component

−*v y , y component

θ

∥∥−*v y
∥∥= ∥∥−*v ∥∥sinθ

∥∥−*v x
∥∥= ∥∥−*v ∥∥cosθ

〈vx , vy 〉

Figure 4.13
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Example 4.2.5: – Components in the First Quadrant

Find the x- and y- components of the vector with magnitude 10 in the
direction of 30◦

Solution:

x component: ∥∥−*v x
∥∥= ∥∥−*v ∥∥cosθ

= 10cos30◦

= 10

(p
3

2

)

= 5
p

3

y component: ∥∥−*v y
∥∥= ∥∥−*v ∥∥sinθ

= 10sin30◦

= 10

(
1

2

)
= 5

The vector with its components are shown in Figure 4.14 x

y

−*v

∥∥−*v x
∥∥= 5

p
3

∥∥−*v y
∥∥= 5

30◦

〈5p3,5〉

Figure 4.14Care and attention should be taken when working with vectors located in other
quadrants. For instance, if a vector is in the quadrant II then we would expect
the x component to be negative, and the y component to be positive, while
vectors in quadrant IV have signs that are the converse of quadrant II. Vectors
in quadrant III are expected to have both x and y components negative. It is
always a good strategy to draw a diagram of the problem; not just to better un-
derstand the problem, but the results found can be compared so that they make
sense.

x

y

203.37◦

〈−*u x ,−*u y 〉

Figure 4.15

Note:
The vector labeled 〈−*u x ,−*u y 〉 is equiva-
lent to 〈∥∥−*u x

∥∥,
∥∥−*u y

∥∥〉.

Example 4.2.6:

Find the components of vector −*u with magnitude 162 and direction θ =
203.37◦.

Solution:

Begin by drawing a diagram of the vector described (shown in Figure 4.15).
This will help ensure that our answers make sense. There are two ways to
approach this type of problem where the first is to use the angle given at
203.37◦ (preferable in this case), and the second is to use the reference an-
gle of 203.37◦−180◦ = 23.37◦. If we use the reference angle the resultant
components will be in the first quadrant and their signs would have to be
changed to negative to place them in the third quadrant.

x- component:∥∥−*u x
∥∥= ∥∥−*u ∥∥cosθ

= 162cos203.37◦

=−148.71

y- component:∥∥−*u y
∥∥= ∥∥−*u ∥∥sinθ

= 162sin203.37◦

=−64.26
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∥∥−*u ∥∥= 30lb

−*ux

−*uy

34◦

Figure 4.16

Example 4.2.7: – Vector Components

A lawnmower is pushed with a force of 30 pounds with an angle of depres-
sion of 34◦ as shown in Figure 4.16. What are the horizontal and vertical
forces acting on the lawnmower?

Solution:
x- component:

−*u x = ∥∥−*u ∥∥cosθ

= 30cos
(−34◦

)
= 24.8711 lb

y- component:

−*u y =
∥∥−*u ∥∥sinθ

= 30sin
(
34◦

)
=−16.7758 lb

Notice the vertical component, −*u y , is negative. The reason for this is that
I had relocated the vector in the Cartesian plane with the initial point of −*u
located at the origin. This placement makes the angle of depression to be
either −34◦, or its coterminal equivalent 326◦. Thus, the vertical compo-
nent would be negative. A negative component only means that the direc-
tion is either down/backward, while a positive component is up/forward.
In this case, the force moving the lawnmower forward is approximately 25
lb, and there is approximately 17 lb of force directed toward the ground.

Note:
See Appendix A for information on di-
rectional heading, bearing, and the dif-
ference between them.

East

resultant vector

Winnipeg

Chicago

∠20◦

Figure 4.17

Example 4.2.8: – Combining Vectors

To avoid a storm a jet travels N 70◦E , or equivalently 20◦ north of east, from
Winnipeg for 300 km and then turns to a heading S28◦E , or equivalently
62◦ south of east, for 1150 km to arrive at Chicago. Find the displacement
from Winnipeg to Chicago.

Solution:

Figure 4.17 shows the flight path. It is a good idea to draw a picture if
possible. While it would be possible to try and measure the vectors and
angles it will be easier to add these by components. We will calculate the
components for each leg of the journey and then add them up. For the

first leg
−→
L1 = 〈L1x ,L1y 〉 we have

L1x = 300cos
(
20◦

)= 282

L1y = 300sin
(
20◦

)= 103

For the second leg
−→
L2 = 〈L2x ,L2y 〉 we have

L2x = 1150cos
(
62◦

)= 540

L2y =−1150sin
(
62◦

)=−1015

It is important to notice that the y component is negative because it points
in the negative y direction. The picture will help make sure the signs are
correct on your components.

The resultant vector is
−*
L1 +−*

L2 = 〈282,103〉 + 〈540,−1015〉 = 〈822,−912〉.
The distance from Winnipeg to Chicago is the magnitude of the resultant

vector. So the displacement is
√

8222 + (−912)2 = 1228 km.
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E

N

Initial bearing

w
in

d

−*
R

127◦
θ

Figure 4.18

Example 4.2.9: – Combining Vectors

An airplane is on a heading of N 37◦W with a ground speed of 750 km/hr
when it encounters a strong wind with a velocity 100 km/hr at a bearing of
N 30◦E . Find the resultant speed and direction (bearing) of the airplane.
Figure 4.18

Solution:

The resultant speed and direction of the airplane (
−*
R ) is the sum of the

plane’s ground speed velocity vector and the wind speed vector. Figure
4.18 shows the relationship between the vectors. To add them we will first

write them as components. Let
−*
P = 〈Px ,Py 〉 be the airplane ground speed

vector and
−*
W = 〈Wx ,Wy 〉 be the wind speed vector.

−*
P = 750〈cos

(
127◦

)
, sin

(
127◦

)〉
≈ 〈−451,599〉km/hr

−*
W = 100〈cos

(
60◦

)
, sin

(
60◦

)〉
≈ 〈50,87〉km/hr

Note the signs on the components of the vectors and compare them to the
figure. You expect the x component of the airplane’s ground speed vector
to be negative, and it is.

So the velocity of the plane in the wind is

−*
R = −*

P +−*
W

≈ 〈−451,599〉+〈50,87〉
≈ 〈−401,686〉km/hr

and the resultant speed of the airplane

||−*R || ≈
√

(−401)2 + (686)2

≈ 795km/hr

For the bearing we will use the angle θ made with the negative x axis as
shown in the figure.

θ = tan−1
(

686

401

)
≈ 59.7◦

which we write as bearing 329.7◦, or N 30.3◦W . And we can put them to-
gether to say the airplane is traveling at 795 km/hr bearing 329.7◦.
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4.3 Applications of Vectors

4.3.1 Applications of Vectors

In this section we apply the principles from the previous two sections. There are
many applications for vectors spanning from physical applications, opticals,
data structures, chemistry, and electrical engineering just to name a few. While
there are far too many applications to show examples of each, their properties
are the same.

A common use for vectors in physics and engineering applications is adding up
forces acting on an object.

x

y

F1 = 40 N

F3 = 30 N

F2 = 50 N

30◦

135◦

60◦

Figure 4.19 Example 4.3.1: – Adding forces

Suppose there are three forces acting on an object as shown in Figure 4.19,
a 40 Newton a force acting at 30◦, a 30 Newton force acting at 300◦ and a
50 Newton force acting at 135◦. Find the resultant force vector acting on
the object.

Solution:

The resultant force will be the sum of all the vectors. To add them we will
first write them as components. Since we are measuring all the the an-
gles from the horizontal x-axis the signs of each of the components will
be correct because the sine and cosine functions will be positive and neg-
ative in the correct quadrants. You can verify this by noticing that the x
component of F2 and the y component of F3 are both negative.

−*
F1 = 40〈cos

(
30◦

)
, sin

(
30◦

)〉
≈ 〈34.641,20〉N

−*
F2 = 50〈cos

(
135◦

)
, sin

(
135◦

)〉
≈ 〈−35.355,35.355〉N

−*
F3 = 30〈cos

(
300◦

)
, sin

(
300◦

)〉
≈ 〈15,−25.981〉N

−*
R =−*

F1 +−*
F2 +−*

F3 = 〈34.641,20〉+〈−35.355,35.355〉+〈15,−25.981〉

−*
R = 〈14.286,29.375〉

We can find the magnitude∥∥∥−*R ∥∥∥=
√

14.2862 +29.3752 ≈ 32.664 N

and direction of the resultant vector:

θ = tan−1
(

29.375

14.286

)
≈ 64◦

aA Newton (N) is a metric unit of force N = kg·m
s2
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θ

∠30◦

∥∥−*w∥∥=−250 lb

−*w 1
θ

−*w 2

Figure 4.20

Example 4.3.2: – Gravitational Force

A handtruck/dolly is being pulled up a board-ramp inclined 30◦ with dolly-
load combined weight of 250 pounds (operator of the dolly not included).
It is known that the board has a maxiumum load carrying capacity of 220
pounds at it’s center (weakest point) when horizontal.

a) Will the board/ramp break?

b) What force is required to pull the dolly up the ramp?

Solution:

To begin we first need to draw an illustration of the problem (Figure 4.20).
The weight of an object is the gravitational force from which Earth attracts
it. The force always acts vertically downward which is indicated by

∥∥−*w∥∥ in
the illustration. The components of −*w are labelled −*w 1 and −*w 2 instead of
horizontal,or x, and vertical, or y , components because in this illustration
the components aren’t horizontal and vertical in standard position; rather
we’ll refer to them as perpendicular and parallel to the ramp.

a)
If the boards maximum load capacity was determined horizontally then
we need to determine the force perpendicular to the ramp which is −*w 1.
Notice that −*w 1 is adjacent to θ, thus we have

−*w 1 =
∥∥−*w∥∥cosθ

=−250cos30◦ Since −*w is vertical then
∥∥−*w∥∥ is

-250 since it’s a gravitational
force. Also it can be calculated
by 250sin270◦.

≈−216.506 lb

The perpendicular force acting on the ramp is approximately 217 pounds
which is under the maximum breaking force, so no the ramp will not break.

b)
The force required to pull the dolly up the ramp has to be greater than the
gravitational force pulling it down the ramp. The force down the ramp is
parallel to the ramp which is labelled as −*w 2 in Figure 4.20. Notice that −*w 2

is the same length as the opposite side of angle θ.

−*w 1 =
∥∥−*w∥∥sinθ

=−250sin30◦

=−125 lb

The gravitational force pulling the dolly down the ramp is -125 pounds,
thus the force to pull the dolly up the ramp has to be greater (> 125 lb). If
the opposite force was equal to the gravitational force the dolly would be
stationary.
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S

0◦
N

EW

−*w

−*w

−*p

−*r p

Figure 4.21: Not to scale

Example 4.3.3: – Cardinal Direction

A plane is traveling due East at an airspeed of of 322 km/h. If a wind of 40
km/h is coming in from due Northeast, find the ground speed and bearing
of the plane (Figure 4.21.

Solution:

The cardinal direction of N E is 45◦, and if a wind is coming in from N E
then its heading is due Southwest (SW ). To find the resultant magnitude
and direction we just need to add the two vectors together. This approach
is the same as all others except some may find it easier to setup and add
the vector components with a table.

Vector Horizontal Component Vertical Component

−*p 322cos0◦ = 322 322sin0◦ = 0
−*w 40cos225◦ =−28.2843 40sin225◦ =−28.2843

−*r p 322+(-28.2843)=293.716 0+(-28.2843)=-28.2843

Now that we have the components of the resultant vector, we can deter-
mine the magnitude and direction.

∥∥−*r p
∥∥=

√
293.7162 + (−28.2843)2 ≈ 295.074 km/h

To determine the bearing we first need to know the angle in standard form.

θ−*r p
= tan−1

(−28.2843

293.716

)
≈−5.501◦

The angle in standard form is approximately −5.5◦, thus the bearing of the
plane is S 95.5◦E .

IR

IC

I

θ

Figure 4.22

Example 4.3.4: – Electronics

In a parallel resistance-capacitance (RC ) circuit, the current
−*
I C , or simply

IC , through the capacitance leads the current
−*
I R , or simply IR , through

the resistance by 90◦, as illustrated in Figure 4.22. If IC = 0.75 A and IR =
1.5 A, find the total current

−*
I in the circuit and the phase angle θ of the

circuit.

Solution:

−*
I =

√
I 2

C + I 2
R =

√
(0.75)2 + (1.5)2 ≈ 1.68 A

θ = tan−1

(
IC

IR

)

= tan−1

(
0.75

1.5

)
≈ 26.57◦
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30◦

x

y

60◦

F f

G

100 lb

30◦

Figure 4.23

Example 4.3.5: – Frictional forces on inclined plane

A concrete block is at rest on an inclined plane that makes an angle of 30◦
with respect to the horizontal. If the concrete block weighs 100.0 lb, what
is the frictional force between the block and the inclined surface?

Solution:

Here the frictional force F f is equal but opposite the gravitational force
acting on the block to pull it down the plane. The illustration in Figure 4.23
shows F f equal but opposite the gravitational forces acting on the block.
The way the illustration is drawn with labels for two different angles, we
have two trigonometric functions for solving the component parallel to
the inclined surface.

F f = 100∗cos60◦ = 50 lb

or

F f = 100∗ sin30◦ = 50 lb

r

θ

−*a T = rα

−*a φ

−*a R = rω2

Figure 4.24

Example 4.3.6: – Satellite orbit

For a satellite orbiting in a circular motion around the Earth, the tangen-
tial component −*a T = rα and the centriptal component −*a R = rω2 of its
acceleration are shown in Figure 4.24. The radius r is the distance from
the center of the Earth to the satellite, its angular velocity is ω, and its an-
gular acceleration is α which is the rate that ω is changing.

While in orbit, a satellite travels in a circular path with a radius of 6.789×
106 m. At this radius ω = 1.32×10−3 rad/s, and α = (0.450×10−6) rad/s2.
What is the magnitude of the resultant acceleration and the angle it makes
with the tangential component?

Solution:

−*a R = rω2 = (6.789×106)(1.32×10−3)2

= 11.83 m/s2

−*a T = rα= (6.789×106)(0.450×10−6)

= 3.05 m/s2

Since a tangent line to a circle is perpendicular to the radius at the point
of tengency, −*a T is perpendicular to −*a R . Thus,

−*a =
√

(−*a T )2 + (−*a R )2 =
√

11.832 +3.052

= 12.22 m/s2

φ= tan−1

(−*a R
−*a T

)
= tan−1

(
11.83

3.05

)
= 75.54◦
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50◦

Free Books
w=200 lb

Figure 4.25

x

y−*c

−*
b

−*s

130◦

Figure 4.26

Example 4.3.7: – Addition of vectors

A 200 lb sign is held in position by a cable inclined 50◦ with the horizontal,
and a steel brace perpendicular to the wall as shown in Figure 4.25. Find
the magnitudes of the forces in the cable and the brace that keep the sign
stationary.

Solution:

Drawing a diagram of the vectors in standard position will help greatly
with this problem (Figure 4.26). The steel bar holding the sign out from

the wall is exerting a horizontal force
−*
b in the positive x direction, the ca-

ble exertes a pulling force −*c at 130◦, and the weight of the sign is vertically
downward with an angle of 270◦ or −90◦, and is represented in the vector
illustration as −*s . In this example, we know the directions but not the mag-
nitudes with the exception of the weight of the sign where

∥∥−*s ∥∥=−200 lb.

Vector Horizontal Component Vertical Component

−*c ∥∥−*c ∥∥cos130◦
∥∥−*c ∥∥sin130◦

−*
b

∥∥∥−*b ∥∥∥cos0◦ =
∥∥∥−*b ∥∥∥ ∥∥∥−*b ∥∥∥sin0◦ = 0

−*s ∥∥−*s ∥∥cos270◦ = 0
∥∥−*s ∥∥sin270◦ =−200∑ −*

R x = ∥∥−*c ∥∥cos130◦+
∥∥∥−*b ∥∥∥ −*

R y =
∥∥−*c ∥∥sin130◦−200

Since the sign is stationary the components of the resultant vector
−*
R x and−*

R y can be set equal to zero. Thus we have the following two equations:

−*
R x = ∥∥−*c ∥∥cos130◦+

∥∥∥−*b ∥∥∥= 0 (4.1)

−*
R y =

∥∥−*c ∥∥sin130◦−200 = 0 (4.2)

From the second equation we obtain the following

∥∥−*c ∥∥= 200

sin130◦

≈ 261.08 lb

Substituting this result into (4.1) we get

261.08cos130◦+
∥∥∥−*b ∥∥∥= 0∥∥∥−*b ∥∥∥=−261.08cos130◦

≈ 161.82 lb

Therefore, the tension in the cable is 261.08 lb, and the compression force
on the bar is 161.82 lb.
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4.4 Oblique Triangles: Law of Sines

4.4.1 Law of Sines

A C

B

b

b −x x

h a
c

Figure 4.27

Up to now all the triangles we have looked at have been right triangles (one
angle of 90◦). If we knew two other pieces of information about the triangle,
lengths of sides or angle measure, we could solve the triangle. Recall that to
solve a triangle we wanted to find the lengths of all the sides and the measure of
all the angles. Suppose we have a triangle with no right angles such as 4ABC
in Figure 4.27. A triangle with no right angles is called an oblique triangle. For
our oblique triangle we label the angles with upper case letters A, B , and C and
the sides opposite those angles with the corresponding lower case letter. Sup-
pose we want to find a relationship between the sin A and the sides of triangle.
We can’t use our usual relationship of opposite over hypotenuse because that
applies to right triangles. We will draw the height of the triangle h, (in this case
from B), and divide the triangle into two right triangles. With the right triangles
we can use our usual relationships:

sin A = h

c
sinC = h

a

Solving each of the equations for h gives us

h = c sin A h = a sinC

Setting them equal

h = h

c sin A = a sinC

sin A

a
= sinC

c

We can similarly find a relationship for sinB .

sin A

a
= sinB

b

This is known as the Law of Sines and is summarized in the table below.

Law of Sinesθ

If a triangle has sides of lengths a, b, and c opposite the angles A, B , and
C , respectively, then

sin A

a
= sinB

b
= sinC

c
.

The reciprocal is also true

a

sin A
= b

sinB
= c

sinC
.

Note: The law of sines was proved for an acute triangle where all the angles
were less than 90◦ but the law holds for all triangles.

There are 2 cases where we can use the law of sines. In each of these cases we
need three pieces of information.

Case 1: One side and two angles (AAS or ASA)
Case 2: Two sides and an angle opposite one of them (Side Side Angle SSA)
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A C

40◦

B

105◦

b = 20 m

a
c

Figure 4.28

Example 4.4.1: – Case 1: One side and two angles (AAS)

Solve the triangle in Figure 4.28 where B = 105◦, C = 40◦, and b = 20 me-
ters.

Solution:

Recall that to solve the triangle we need to find the remaining sides and
angles. We begin with the missing angle because the sum of the angles of
a triangle is always 180◦.

A = 180−B −C

= 180−105◦−40◦

= 35◦

So A = 35◦ and by the law of sines we can find the missing sides:

a

sin A
= b

sinB
= c

sinC

a

sin35◦
= 20

sin105◦
= c

sin40

So we have the following two equations:

a

sin35◦
= 20

sin105◦
and

20

sin105◦
= c

sin40

and we can solve for a and c

a =
(

20

sin105◦

)
(sin35◦) and c =

(
20

sin105◦

)
(sin40)

a ≈ 11.88 m and c ≈ 13.11 m

4.4.2 The Ambiguous Case: SSA

In Example 4.4.1 we knew two of the angles and one side. This amount of infor-
mation determines one unique triangle. In the case where you know two sides
and an angle opposite one of them there are 3 possible outcomes which are
shown in Figure 4.29: no solutions, one solution or two solutions. This is called
the ambiguous case.

A is acute.

a < h

None

h

A

B

ac

A is acute.

a = h

One

A

B

a
c

A is acute.

a ≥ c

One

h

A

B

ac

A is acute.

h < a < c

Two

h

A

B

a a
c

A is obtuse.

a ≤ c

None

A

B

a
c

A is obtuse.

a > c

One

A

B

a
c

Figure 4.29
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h

A

B

9 910

C ′ C

Figure 4.30

Example 4.4.2: – Case 2: Two sides and one angle, two solutions (SSA)

Solve the triangle where A = 60◦, a = 9, and c = 10.

Solution:

When you have an angle and two sides you want to draw what you know
and then calculate the height. The height will let you know if you can make
a triangle or not. The side opposite the angle you know has to be at least
as long as the height or you can’t make a triangle.

sin60◦ = h

10
=⇒ h = 8.66

In Figure 4.30 the red sides are the two possibilities because

(h = 8.66) < (a = 9) < (c = 10)

We start by solving the triangle where C is an acute angle. Using the law of

sines,
sin A

a
= sinC

c
, we can solve for C

sin60

9
= sinC

10
=⇒ C = sin−1

(
10sin60

9

)
= 74.21◦

and B = 180◦−60◦−74.21◦ = 45.79. Then the final side can be found with
the law of sines again.

9

sin60◦
= b

sin(45.79◦)
=⇒ b = 9sin(45.79◦)

sin60◦
= 7.45

The solution to the first triangle is C = 74.21◦, B = 45.79◦ and b = 7.45 .

The second triangle has C ′ > 90◦ and is the supplementary to C . (Why?)

C ′ = 180◦−74.21◦ = 105.79

and B ′ = 180◦ − 60◦ − 105.79◦ = 14.21◦. The final side can once again be
calculated using the law of sines.

9

sin60◦
= b′

sin(14.21◦)
=⇒ b′ = 9sin(14.21◦)

sin60◦
= 2.55

The solution to the second triangle is C = 105.79◦, B = 14.21◦ and b = 2.55 .

h

A

C

6
12.8

30◦

Figure 4.31

Example 4.4.3: – Case 3: Two sides and one angle, No solution (SSA)

Solve the triangle where A = 30◦, a = 6, and b = 12.8.

Solution:

In this case we have no solution because the sides can’t meet. Drawing a
diagram of the information you know will help to see this as in Figure 4.31.
Consider the height h of the this possible triangle.

sin30 = h

12.8
=⇒ h = 6.4

Since the height is 6.4 but the side opposite A has length 6, there is no way

to construct this triangle and hence there is no solution.
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h

500 400 x

20◦ 25◦

Figure 4.32

h

c = 500

20◦ 25◦B

C

b

Figure 4.33

Example 4.4.4:

A person standing 400 ft from the base of a mountain measures the angle
of elevation from the ground to the top of the mountain to be 25◦. She
then walks 500 ft straight back and measures the angle of elevation to now
be 20◦. How tall is the mountain?

Solution:

We assume that the ground is flat and not inclined relative to the base
of the mountain and we let h be the height of the mountain as in Figure
4.32. It will helpful to redraw the diagram (Figure 4.33) without unneeded
information, and label the diagram so that the application of the law of
sines is apparent.

We know that angle B is supplementary to 25◦ so B = 180◦ − 25◦ = 155◦.
The angles in a triangle add up to 180◦ so C = 5◦. Now we have enough in-
formation to use the law of sines to calculate the distance from the second
observation point to the top of the mountain, length b in the diagram.

b

sin155◦
= 500

sin5◦

b = 500sin155◦

sin5◦

b ≈ 2424ft

Now we can use the right triangle with the height h as the opposite side to
the 20◦ and b = 2424 ft as the hypotenuse.

h = 2424sin20◦ = 829ft

This is the same height we had calculated earlier but the calculations were
simpler.

1250
N−*

T

70◦

50◦

horizontal reference only
not to imply ground

Figure 4.34

x

y

1250

−50◦

∥∥∥−*T ∥∥∥
30◦

110◦

40◦

Figure 4.35

Example 4.4.5:

Find the tension
−*
T in the left guy wire attached to the top of the tower

shown in Figure 4.34.

Solution: We must first recognize that we can’t just find the lenth of the
side in this case because the lengths of the sides aren’t given, rather they
represent tension. One way to solve this is to use the law of sines where
we can redraw a diagram with the vectors head-to-tail so that the terminal
point of the second vector is vertical to the initial point of the first (Figure
4.35). The reason for this is because the horizontal components must be

equal. From here we can use the law of sines to solve for
∥∥∥−*T ∥∥∥.

∥∥∥−*T ∥∥∥
sin40◦

= 1250

sin30◦∥∥∥−*T ∥∥∥= 1250 · sin40◦

sin30◦

= 1606.97 N
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4.5 Law of Cosines

4.5.1 Introduction

In Section 4.4 we were able to solve triangles with no right angles using the law
of sines.

sin A

a
= sinB

b
= sinC

c
.

The law of sines works in two cases:

Case 1: One side and two angles (AAS or ASA)
Case 2: Two sides and an angle opposite one of them (SSA)

There are two cases for which the law of sines does not work because we only
have one piece of information in each of our ratios. To use the law of sines you
have to have at least one angle and its corresponding opposite side along with
one more piece of information being either a side or an angle. However, this is
not true for these last two cases.

Case 3: Three sides (SSS)
Case 4: Two sides and the included angle (SAS)

A C

B

b

b −x x

h a
c

Figure 4.36: Law of Cosines DiagramTo find another equation to solve the last two cases we will once again construct
an oblique triangle and label the angles with upper case letters A, B , and C and
the sides opposite those angles with the corresponding lower case letter. We
draw the height of the triangle h, (in this case from B), and divide the triangle
into two right triangles. Now side b is divided into two pieces, one with length
x and the other with length b−x (Figure 4.36). Using the Pythagorean theorem
we can write an equation for h for both triangles.

For the triangle on the right
h2 = a2 −x2 (4.3)

For the triangle on the left

h2 = c2 − (b −x)2

h2 = c2 − (
b2 −2bx +x2)

h2 = c2 −b2 +2bx −x2 (4.4)

Both of these equations involve x but we would like to use only the sides and
angles originally given so using the cosine we see that x = a cosC . Now set
equation (4.3) equal to equation (4.4) and simplify.

h2 = h2

a2 −x2 = c2 −b2 +2bx −x2

c2 = a2 +b2 −2bx

Replace x = a cos C
c2 = a2 +b2 −2ab cos C . (4.5)

This is known as the Law of Cosines And it relates the three sides of the trian-
gle and one of the angles. This equation can be written in terms of any of the
angles. The results are summarized here.
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Law of Cosines

If a triangle has sides of lengths a, b, and c opposite the angles A, B ,
and C , respectively, then

Standard Form Alternative Form

a2 = b2 + c2 −2bc cos A cos A = b2 + c2 −a2

2bc

b2 = a2 + c2 −2ac cos B cos B = a2 + c2 −b2

2ac

c2 = a2 +b2 −2ab cos C cos C = a2 +b2 − c2

2ab

Note: The law of cosines was proved for an acute triangle where all the angles
were less than 90◦ but the law holds for all triangles.

A C

B

9

3
8

Figure 4.37

Note: When using the law of cosines, it
is helpful to determine the largest an-
gle first. The reason for this is because
if cosine is positive, then the angle is
acute. If cosine is negative the angle is
obtuse. Once the largest angle is deter-
mined, then the other two angles must
be acute. Also, if cosine is zero then this
means the angle is 90◦.

Example 4.5.1: – Case 3: Three sides (SSS)

Solve the triangle in Figure 4.37 where a = 3, b = 9, and c = 8.

Solution:

Recall that to solve the triangle we need to find all sides and angles. We
have three sides so we can’t use the law of sines but we can use the law of
cosines. We will use the alternate form so we can find one of the angles.
We will start with the largest angle, which is opposite the longest side, ∠B .

cos B = a2 + c2 −b2

2ac

= 82 +32 −92

2 ·3 ·8

=−1

6

So, B = 99.59◦. Generally if you can use the law of sines it is easier than the
law of cosines. Now that we have one of our angles we can use the law of
sines to find another angle, say ∠A.

sin A

a
= sinB

b

sin A

3
= sin99.59◦

9

A = sin−1
(

3(sin99.59◦)

9

)
Then A = 19.19◦ and C = 180◦−A−B = 180−19.19◦−99.59◦ =⇒ C = 61.22.
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B A

C

10

3
a

55◦

Figure 4.38

Example 4.5.2: – Case 4: Two sides and the included angle (SAS)

Solve the triangle where A = 55◦, b = 3, and c = 10.

Solution: Figure 4.38 is a sketch of the given information. Once again we
can’t use the law of sines because we don’t know an angle and the length
of its opposite side. We will start by calculating the length of a with the law
of cosines and then use the law of sines to find another angle. While we
could use the law of cosines to do solve for the angle, it is easier to use the
law of sines whenever you have the choice.

a2 = b2 + c2 −2bc cos A

= 33 +102 −3 ·3 ·10cos
(
55◦

)
= 74.5854

So a = 8.64. Using the law of sines,
sin A

a
= sinC

c
, we can solve for C .

sin55◦

8.64
= sinC

10
=⇒ C = sin−1

(
10sin55◦

8.64

)
= 108.48◦

and B = 180◦−55◦−108.48◦ = 16.52◦.

The solution to the first triangle is C = 108.48◦, B = 16.52◦ and a = 8.64.

Example 4.5.3:

Two radar stations located 10 km apart both detect a UFO located between
them. Station Alpha calculates the distance to the object to be 7500 m and
Station Beta calculates the distance as 9200 m. Find the angle of elevation
measured by both stations (α) and (β). See Figure 4.39

IAlpha I Beta

b = 7500 m a = 9200 m

c = 10,000 m

α β

C

Figure 4.39: UFO and radar stations

Solution:

The triangle formed by the radar stations and the UFO is not a right tri-
angle and we know three sides (SSS). This means we need to use the law
of cosines to calculate one of the angles. As before we will use the law of
sines to calculate the second angle. Since we are looking for the angle we
need the alternate form of the law of cosines:
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cosβ= a2 + c2 −b2

2ac

= 92002 +100002 −75002

2(9200)(10000)

= 0.697772

So β= cos−1(0.697772) = 45.75◦ and we can use the law of sines to find α.

sinα

a
= sinβ

b
sinα

9200
= sin45.75◦

7500

sinα= 9200sin45.75◦

7500
α= 61.48◦

Then α= 61.48◦ and β= 45.75◦

Example 4.5.4:

A baseball diamond is a square with 90 foot sides, with a pitcher’s mound
60.5 feet from home plate. How far is it from the pitcher’s mound to third
base? A diagram of the dimensions of a baseball diamond is in the figure
below.

Pitcher’s mound

home plate

second base

first
base

third
base

45◦

60.5 ft

90 ft90 ft

a
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Solution:

Solution:

It is tempting to assume the pitcher’s mound is in the center of the baseball
diamond but it is not. It is located about 3 feet closer to home plate than
the center. The distance to third base will therefore be different than the
distance to home plate. We do have two sides of a triangle and the angle
between them. The triangle is drawn on the diagram and the angle is 45◦
(why?). Using the law of cosines we can find the missing length.

a2 = b2 + c2 −2bc cos A

a2 = 902 +60.52 −2(90)(60.5)cos 45◦

a2 = 4060

a = 63.72 ft

S

0◦
N

EW

30◦

40◦

Figure 4.40

S

0◦
N

EW 110◦

∥ ∥−* p
∥ ∥ = 4

km

∥∥ −*s ∥∥=
2

km

−*
R

Figure 4.41

Example 4.5.5: – Displacement

A pengquin and a sloth have escaped from a zoo in Seattle. The penquin
takes off in the direction of N 30◦E for 4 km before being found, while the
sloth managed to travel 2 km heading S40◦E at the time he was found (Fig-
ure 4.40). What was the displacement between the penquin and sloth?

Solution:

In the past we’ve added vectors by components; however, since we are
only looking for the displacement, then it will be faster to use the law of
cosines in this case since we have a SAS triangle (Figure 4.41 shows the
magnitudes of the vectors and the angle between the two paths.

∥∥∥−*R ∥∥∥2 = ∥∥−*p ∥∥2 ·∥∥−*s ∥∥2 −2
(∥∥−*p ∥∥)(∥∥−*s ∥∥)

cos 110◦∥∥∥−*R ∥∥∥2 = 42 ·22 −2(4)(2)cos 110◦∥∥∥−*R ∥∥∥=
√

42 ·22 −2(4)(2)cos 110◦

= 8.34 km

Notice that the equations for the law of cosines is the same for each side you’re
solving for. For instance, lets say we’re looking for side x knowing its corre-
spoinding opposite angle θx and the other two legs of the triangle, say l1 and l2.
Then the law of cosines is

x2 = l 2
1 + l 2

2 −2(l1)(l2)cos θx

Thus, it’s not necessary to remember all 3 equations for a 4ABC as if they are
somehow different.
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5.1 Introduction

Up till now, all numbers that we’ve interacted with have been real numbers. At-
tempting to describe imaginary numbers, or complex numbers, is difficult at
first because more often than not the first question a student has is “what are
the uses, or practical applications for imaginary numbers?” In fact, the term
“imaginary” tends to lend itself suspect as if it’s reserved for the mathematical
purist where its application will undoubtedly resemble fiction. The reality is
that imaginary numbers have too many uses and applications to list; however,
a generalization of the two main uses seems more appropriate as an introduc-
tion.

The first use for imaginary numbers occurs with real quantities that are natu-
rally described with complex numbers. You may have already noticed that both
the terms of imaginary, or complex, numbers have seemingly been used inter-
changeably, and they have been, but more on that later in this section. It is
admittedly rare to find many real world applications where complex numbers
occur naturally, but they are invaluable in the fields of electronics and elec-
tromagnetism. With regard to electronics for instance, the state of a circuit
element is described by two real quantities which are the voltage V that runs
across it and the current I that flows through it. These two quantities are much
more easily described by a single complex number. A circuit element may also
have a capacitance C , and an inductance L which essentially is the tendency to
resist changes in both voltage and current respectfully that is also represented
by a single complex number. With regard to electromagnetism, a single com-
plex number can describe an electromagnetic field that has two real quantities
(electric field strength and magnetic field strength) where the electric and mag-
netic components are real and imaginary components of a complex number
respectfully.

The second use for complex numbers, which occurs much more frequently, is
with quantities that are defined with real numbers, but are more easily under-
stood with complex numbers. In math and engineering, this occurs all the time
in topics of calculus, quadratic equations, differential equations, etc.; however,
many reading this chapter may be unfamiliar with examples in those topics,
but the use for complex numbers occurs in them nonetheless. When it comes
to modeling, say fluid around certain obstacles, complex analysis helps trans-
form a complicated model into a much simpler one. Structural analysis of steel
beams in a building, damped oscillator (spring and shocks on a car), statistics
and probability theory, and quantum mechanics are all examples of real valued
examples made simpler through complex analysis.

5.1.1 Imaginary Unit

The need for complex numbers arose because of certain problems required the
need to take the square root of a negative number. We’ve always been told that
we can’t take the square root of a negative number; and in fact we been told
that the square root of a negative number is undefined. While this is true for
real numbers, the square root of a negative number does exist in the complex
plane.

Essentially the square root of any number breaks down to the square root of -1.
For instance,

p−25 =p
25(−1) =p

25
p−1 = 5

p−1. The name for the
p−1 is the

imaginary unit and is represented as i . Thus, we have

i =p−1
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While the letter i is fairly universal for representing the imaginary unit, some
books will opt to let j represent the imaginary unit instead. This is primarily
because authors don’t like to use the same letter or symbol to represent differ-
ent things, and i is often used to represent current in electrical systems. In this
book, we’ll use the letter j to represent the imaginary unit.

As shown above with example of
p−25, One of the first things we learn to do

with working with imaginary numbers is to represent the square root of an
imaginary number as the product of a real number and the imaginary unit j .
The square root of an imaginary number is called a pure imaginary number.

Pure Imaginary Number

If b is a real number greater than zero, b > 0, then
p−b is a pure imagi-

nary number and

p
−b =

√
b(−1) =

p
b
p−1 = j

p
b

where j =p−1

Example 5.1.1:

Express the following square roots in terms of j .

a)
p−9

b)
p−0.25

c)
p−7

Solution:

a)
p−9 = p

9(−1) = p
9
p−1 = 3 j

b)
p−0.25 = p

0.25
p−1 = 0.5 j

c)
p−7 = p

7
p−1 = j

p
7

Note:
In the case of part c) of Example 5.1.1, It
is more preferable to write the simpli-
fied result as j

p
7 instead of

p
7 j . The

main reason for doing this is so j is not
accidentally interpreted to be under the
radical as well such as

√
7 j .

5.1.2 Cyclical Nature of Imaginary Numbers

Since j = p−1, then there is a pattern when raising j to exponential powers.
For instance, notice the pattern below when we raise j to different powers:

j =p−1

j 2 =
(p−1

)2 =−1

j 3 =
(p−1

)3 =p−1
(p−1

)2 =− j

j 4 =
(p−1

)4 =
(p−1

)2 (p−1
)2 =−1(−1) = 1

j 5 =
(p−1

)5 =
(p−1

)4p−1 = 1 · j = j

j 6 =
(p−1

)6 =
(p−1

)4 (p−1
)2 = 1(−1) =−1

...
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Because of this cyclical nature of imaginary numbers, any larger powers of j
can be reduced to one of the first four basic powers.

Example 5.1.2:

Reduce the following examples to their simplest form:

a) j 19

b) j 1236

Solution:

Since we know that powers of j are cyclical and repeats after the power of
4, then we need to know how many times that 4 goes into the exponent.
Specifically, we want to know the remainder. If the remainder is 1 then our
result is the same as j 1 = j . If the remainder is 2 then the result is equal to
j 2 and so on. If the remainder is zero, then this is the same as j 4 since 4
goes into 4 evenly with a remainder of 0.

a) For j 19 we have

4
4
)

19
16

3

Since the remainder is 3, then j 19 is equivalent to j 3 =−1

b) For j 1236, we need to do the same thing; however, performing long
division is a little more tedious when the powers become large. A
calculator is certainly faster when it comes to determining the re-
mainder. To use the calculator, just take 1236 and divide by 4 to get
exactly 309. Thus the remainder is 0. Since the remainder is zero,
then j 1236 is equal to j 4 = 1.

If the 4 did not divide evenly, and had a decimal value instead. Then
to determine the remainder with the calculator, you multiply the
decimal part by 4.

In subsection 1.3.2 on page 21. it states that
p

ab =p
a
p

b; however, this simpli-
fication of radicals involving an even number of negative values does not apply.
Rather, the simplest method to avoid incorrect answers is to let j represent all
instances of the

p−1. Note:(p−a
)2 6= p

(−a)(−a)Example 5.1.3:

Simplify
(p−10

)2
.

Solution: (p−10
)2 =

(p
10

p−1
)2

=
(

j
p

10
)2

= j 2
(p

10
)2

= (−1)10

=−10
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Example 5.1.4:

Simplify
(
2
p−5

)(p−16
)

Solution:

(
2
p−5

)(p−16
)
= 2

p−1
p

5 ·p−1
p

16

= 2 j
p

5 · j
p

16 rewrite
p−1 as j

= 2 j 2
p

5 ·4

=−8
p

5 recall j 2 =−1

Example 5.1.5:

Simplify
p−2

p−3
p−6

Solution:

p−2
p−3

p−6 =p−1
p

2 ·p−1
p

3 ·p−1
p

6

= j
p

2 · j
p

3 · j
p

6 rewrite
p−1 as j

= j 3
√

2(3)(6) Use properties of radicals to
rewrite the product of radicals
as a single radical.

=− j
p

36 recall j 3 =− j

=−6 j

5.1.3 Complex Numbers
Below are the components of a complex
number:

a+b j

real
imaginary

A complex number occurs when a real number is added to an imaginary num-
ber. A complex number is of the form a +b j where both a and b are real num-
bers, but since b is multiplied by j , we call b the imaginary component. If a = 0
then we say that b j is a pure imaginary number. When b = 0 then we get a
number of the form a, which is a real number.

Rectangular Form of a Complex Number

The form a +b j is called the rectangular form of a complex number,
where a is the real component and b is the imaginary component.

Two complex numbers are equal if both their corresponding components are
equal. In other words, two complex numbers are equal if their real components
are equal and their imaginary components are equal.

Equality of a Complex Number

If a +b j and c +d j are two complex numbers, then a +b j = c +d j if
and only if a = c and b = d .
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Example 5.1.6:

a +b j = 2+3 j if a = 2 and b = 3

Example 5.1.7:

Solve the following for both x and y :

4x +3 j = 3−x − y j

Solution:

To begin we need to identify the parts that are real and imaginary. The
easiest way to see what is imaginary or not, is to look for the imaginary
numbers (any number multiplied by j ). Thus, there are only two imagi-
nary numbers which are 3 j and −y j . It also may help grouping the real
components and imaginary components within parenthesis.

4x +3 j = 3−x − y j

4x +3 j = (3−x)− y j parenthesis aren’t necessary
here, but they do help to keep
things ordered

The definition states that two complex numbers are equal if their real com-
ponents and imaginary components are equal. Thus we have two equa-
tions to solve once we set up the real components and the imaginary com-
ponents equal to each other.

r eal- components:

4x = (3−x)

4x +x = 3

5x = 3

x = 5

3

i mag i nar y- components:

−y = 3 notice that we don’t need to
include j .

y =−3

5.1.4 Conjugate of a Complex Number

Every complex number has a complex conjugate. The complex conjugate of a
a +b j is a −b j . The imaginary component is the only number that changes
sign when defining the complex conjugate.

Example 5.1.8:

a) The conjugate of 3+2 j is 3−2 j

b) The conjugate of −3−2 j is −3+2 j

c) The conjugate of 5 j is −5 j

d) The conjugate of 7 is 7
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For a quadratic equation of the form
a2 +bx + c = 0, the formula for solving
the x-intercepts (roots) is given by the
quadratic formula:

x = −b ±
p

b2 −4ac

2a

Example 5.1.9:

Use the quadratic formula to solve x2 +2x +4 = 0

Solution:

Substitute the coefficients of x2 +2x +4 into the quadratic formula which
is shown in the margin.

x2 +2x +4 = 0

x = −b ±
p

b2 −4ac

2a

x = −2±
√

22 −4(1)(4)

2(1)
substitute the coefficients into
the quadratic formula.

= −2±p−12

2
simplify some, but don’t
attempt to simplify too much
in one step.

= −2

2
±
p

(−1)(4)(3)

2
separate the fraction into two,
and rewrite -12 as a product of
factors using perfect squares
when possible.

=−1±
p−1 ·p4 ·p3

2

=−1± �2 j
p

3

�2
simplify further and cancel
any like terms

=−1± j
p

3

Thus our two roots are −1+ j
p

3, and −1− j
p

3.

The solutions to an equation equal to zero are often called zeros, or roots. No-
tice that the solutions to the equation are −1+ j

p
3 and −1− j

p
3 in example

5.1.9 above are conjugates of each other. This is not a coincidence, rather com-
plex roots always appear in conjugate pairs. This fact is extremely helpful in
applications involving complex numbers. In addition, the product of two con-
jugate pairs always results in a real number; which is particularly useful when
manipulating complex expressions as we’ll see in the next section.

Though we probably feel like we have a pretty good grasp of what a complex
number is at this point, I’d have to say that the concept of imaginary numbers,
imaginary added to real numbers to create what is called complex numbers
probably still feels like a mathematical abstraction. We do know and under-
stand the cyclical nature of j raised to progressively higher powers which is im-
portant. Also we understand how to algebraically manipulate certain complex
expressions. In the next section we introduce operations of complex numbers
such as adding, subtracting, multiplying, and dividing and their meaning.
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5.2 Operations with Complex Numbers

5.2.1 j - Geometrically

Before we begin operations on complex numbers, it’s important to have a better
understanding of the imaginary unit j .

From the previous section we understand that j 2 = 1, or j = p−1, and have
termed this number imaginary as if it doesn’t exist. The reality is that imaginary
numbers are just as normal as any other number we’ve worked with in the past
such as whole numbers, integers, rationals, and negative numbers. The biggest
difference is that when we look at an equation such as

x2 = 1

We can solve this easily by taking the square root of both sides of the equation to
get the result of both 1 and −1. However, if we introduce the following equation

x2 =−1

We stop for a minute and realize there there are no two numbers when multi-
plied together to result in -1 which is true. This is because we were looking for
legitimate solutions involving real numbers only. To better understand what’s
going on with these two equations, lets break them down and look at them
again.

When we solve the equation x2 = 1, what we really have is the following expres-
sion

1 · x · x = 1

and are asking what transformation applied to x twice results in 1 which we
know is x = −1 and x = 1. However, if we look at x2 = −1 in the same way we
have

1 · x · x =−1

and ask the same thing. What transformation applied to x twice results in −1?
After examining we conclude that x = 1 won’t work because the result is a pos-
itive 1, and x =−1 doesn’t work because 1 ·−1 =−1, but multiply that with an-
other −1 flips the result back to a positive 1. The issue here is that we continue
to find the result on the real number line where we "flip" back and forth be-
tween positive and negative real numbers. What we haven’t considered is that
instead of flipping, what about a rotation? If we think of x being a rotation then
instead of flipping to the opposite side of 0, rather it is rotated about 0.

This introduces the concept of the complex plane since you can’t rotate some-
thing about 0 with it not passing through intemediate values. In the complex
plane, the horizontal axis is the real axis which is the same number line we’re
used to. The vertical axis is the imaginary axis as shown in Figure 5.1 along with
a random complex number plotted for reference.

Im(z)

Re(z)

z = a +b j

θ

a

b

0

Figure 5.1: Complex PlaneNow, if we imagine x being a rotation of 90◦ about the origin and applying it
twice, then we get a 180◦ rotation. This is illustrated in Figure 5.2. In addition,
if we multiply 1 by − j , then we get a clockwise (negative) rotation.
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Im(z)

Re(z)
1-1

j

− j

Figure 5.2

Again, If we multiply 1 by j we get a positive rotation (counter clockwise) by 90◦
, and by multiplying 1 by − j we have a negative rotation (clockwise) of −90◦.
Thus, by applying this multiplication twice, recall x2 = x · x, then we can have
a positive rotation of 180◦ to get -1 since the first multiplication of j gives us a
90◦ rotation to j on the imaginary axis, and by multiplying again by j gives -1
on the real axis. The same holds true in the negative rotation as well, thus we
have two ways to get -1. Therefore, the two square roots of -1 is j and − j or we
can write it as ± j .

x2 =−1

x =±p−1

=± j

Recall the cyclical pattern of j =p−1 (below for convenience) that the pattern
rotates from j to -1, then −i , and finally to 1 before repeating. After thinking of,
say j 3 as j · j · j , it’s now understandable geometridally that with every multiple
of j , j is rotated by 90◦ in the complex plane.

j =p−1

j 2 =
(p−1

)2 = −1

j 3 =
(p−1

)3 =p−1
(p−1

)2 = − j

j 4 =
(p−1

)4 =
(p−1

)2 (p−1
)2 =−1(−1) = 1

j 5 =
(p−1

)5 =
(p−1

)4p−1 = 1 · j = j

j 6 =
(p−1

)6 =
(p−1

)4 (p−1
)2 = 1(−1) = −1

...

Recall that complex numbers are numbers that are both real and imaginary.
These numbers can occur anywhere in the complex plane in the form of a +b j
where a is real and b is imaginary. For example, Figure 5.3 shows the complex
number z = 1+ j plotted on the complex plane.

Im(z)

Re(z)

z = 1+ j

45◦

1

j

0

Figure 5.3

So how does all this help us understand how to add, subtract, multiply, and di-
vide complex numbers? In short, it doesn’t yet, but it will help us understand
what occurs when we perform those operations on complex numbers. Recall
that complex numbers can be used to simplify otherwise complicated tasks that
occur with real application. To affectively use complex numbers, we must have
a basic understanding of what happens when two complex numbers are com-
bined by adding, multiplying, etc. The algebraic process of combining complex
numbers is fairly straight forward.
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5.2.2 Adding, Subtracting Complex Numbers

To add two complex numbers we just need to add the real components to-
gether, and add the imaginary components together.

The trick to all complex arithmetic (add, subtract, multiply, divide) is that you
can treat j as a variable, but everytime you see j 2 replace it with -1.

Addition of Complex Numbers

If a+b j and c+d j are two complex numbers, then their sum is defined
as

(a +b j ) + (c +d j ) = (a + c)+ (b +d) j

Example 5.2.1: – Adding complex numbers

Find each of the following sums:

a)

(2+ j )+ (3+4 j ) = (2+3)+ (1+4) j

= 5+5 j

b)

(−3+7 j )+ (−2+4 j ) = (−3+ (−2))+ (7+4) j

=−5+11 j

c)

(−2−3 j )+ (−6+p−4) = (−2−6)+ (−3+2) j
p−4 =p

4
p−1 = 2 j

=−8− j

It appears that adding complex numbers is straight forward enough, but ge-
ometrically what occurs when one complex number is added to another? For
instance, graphically how does adding −2+ j affect 3+4 j when added together?

First, we can see that (3+4 j )+(−2+ j ) = 1+5 j , but lets take a look at the solution
in the complex plane shown in figure 5.4.

Im(z)

Re(z)

3+4 j

−2+ j

1+5 j

Figure 5.4

It appears that when adding (3+4 j )+(−2+ j ) = 1+5 j that from 3+4 j the com-
plex number has shifted exactly -2 units on the real axis and 1 unit up on the
imaginary axis. Also, its not difficult to see how adding complex numbers re-
sembles adding vectors. For this reason, complex numbers are treated as vec-
tors with some exceptions.

Vectors have direction and magnitude only, thus can be moved anywhere in
the plane without affecting those two attributes. On the other hand, complex
numbers always originate from the origin. There are similarities between the
two which shouldn’t be a surprise. Vectors contain two component x and y ,
where complex contain two components as well; however, there are limitations.
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To subtract two vectors, we perform the same operation as addition except
the real components are subtracted, and the imaginary components are sub-
tracted. The only part that we have to watch out for is when we subtract a neg-
ative which becomes positive.

Addition of Complex Numbers

If a +b j and c +d j are two complex numbers, then their difference is
defined as

(a +b j ) − (c +d j ) = (a − c)+ (b −d) j

Example 5.2.2:

Find each of the following differences:

a)

(7+2 j )− (3+4 j ) = (7+2 j )+ (−3−4 j ) It may be helpful to distribute
the negative first.

= (7−3)+ (2−4) j

= 9−2 j

b)

(−2−3 j )− (−4−5 j ) = (−2−3 j )+ (4+5 j )

= (−2+4)+ (−3+5) j

= 2+9 j

c)

(a −b j )− (−c +d j ) = (a −b j )+ (c −d) j

= (a + c)+ (−b −d) j

It is often helpful to rewrite the difference of two complex numbers as the addi-
tion of two complex numbers by first distributing the negative throughout the
complex number. This will help avoid confusion because it is easy to forget that
you are subtracting both components.

5.2.3 Multiplication of Complex Numbers

Multiplying complex numbers is done in the same manner that we multiplied
to polynomials together (FOIL method). We take each component in the first
complex number and multiply it by both components in the second complex
number, then simplify by combining real components together and imaginary
components together. Recall that we call this distributing. (see Section 1.7)
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Multiplication of Complex Numbers

If a + b j and c + d j are two complex numbers, then their product is
defined as

(a +b j )(̇c +d j ) = (ac −bd)+ (ad +bc) j

While the definition is nice to have, memorizing it isn’t recommended. Rather
is much easier to simply multiply everything out step-by-step and simplify as
shown in the next example.

Example 5.2.3:

Multiply and simplify the answer in the form a +bi .

(3+4 j )(−2+ j )

Solution:

(3+4 j )(−2+ j ) = 3(−2)+3 j +4 j (−2)+4 j 2

=−6+3 j −8 j −4 recall j 2 =−1

= (−6−4)+ (3−8) j

=−10−5 j

Example 5.2.4:

Multiply and simplify the answer in the form a +b j .

(2+3 j )(1+ j )

Solution:

(2+3 j )(1+ j ) = 2(1)+2 j +3 j (1)+3 j 2

= 2+5 j −3

=−1+5 j

Im(z)

Re(z)

2+3 j

1+ j

−1+5 j

Figure 5.5

To see whats going on geometrically when two complex number are multiplied,
we’ll look at the last example, Ex. 5.2.4. Figure 5.5 shows both complex num-
bers plotted in the complex plane along with their product. At first glance there
doesn’t appear to be much of a relationship between the independent com-
plex numbers and their product; however, looking at Figure 5.6 we can see that
(2+3 j ) has been rotated about the origin by the same degree measure that (1+ j )
is which is 45◦.
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Im(z)

Re(z)

2+3 j

1+ j

−1+5 j

45◦

45◦

Figure 5.6

The length, or modulus is defined as the absolute value of a + b j . In other
words, it is the distance from the origin.

Length of a complex number

If a+b j is any complex number, then the absolute value, also called the
modulus, is given by ∣∣a +b j

∣∣=√
a2 +b2

Example 5.2.5:

Show that the magnitude of the product of two the complex numbers in
Ex. 5.2.4 is equivalent to the product of the individual magnitudes.

Solution:

∣∣1+ j
∣∣=p

1+1 =p
2∣∣2+3 j

∣∣=√
22 +32 =p

13∣∣(1+ j )(2+3 j )
∣∣= ∣∣−1+5 j

∣∣=√
(−1)2 +52 =p

26

p
2
p

13 =p
26

Now, what occurs when a complex number is multiplied by its conjugate. Ear-
lier we stated that the product of any complex number and its conjugate results
in a real number.

Example 5.2.6:

Find the product of a +b j and its conjugate a −b j

Solution:

(a +b j )(a −b j ) = a2 −ab j +ab j −b2 j 2

= a2 − (−1)b2

= a2 +b2

Since a, and b are real numbers then the sum of a2 +b2 is also real.

Example 5.2.7:

Find the product of −3+4 j and its conjugate −3−4 j .

Solution:
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(−3+4 j )(−3−4 j ) = (−3)2 +12 j −12 j −4(4) j )2

= 9−16(−1)

= 9+16

= 25

5.2.4 Division of Complex Numbers

At first glance, division of complex numbers appears a little complicated. The
best approach is to not use the formula given below, rather work out the divi-
sion process by steps. The main reason the formula appears complicated is that
the variables a, b, c, and d aren’t able to be combined and simplified through-
out the division process whereas a specific example can be, as we’ll see in the
first example.

We have no way to divide by j so we need to make the denominator a real num-
ber. To do that we need to multiply the denominator by its complex conjugate.

Division of Complex Numbers

If a +b j and c +d j are any two complex numbers, then their quotient
is given by

a +b j

c +d j
= ac +bd

c2 +d 2 + bd −ad

c2 +d 2 j

Example 5.2.8:

Divide and express the result in the form of a +b j .

2+3 j

1+ j

Solution:

2+3 j

1+ j
= 2+3 j

1+ j
· 1− j

1− j
multiply the numerator and
denominator by the conjugate
of the denominator. This will
replace the complex number
in the denominator with a real
number.

= 2(1)−2 j +3 j −3 j 2

12 − j + j − j 2 FOIL both the numerator and
denominator

= (2+3)+ (−2+3) j

1+1
simplify and group real and
imaginary components

= 5+ j

2
combine like terms

= 5

2
+ 1

2
j rewrite in the from of real plus

complex, a +b j .
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Graphically we saw that the product of two complex numbers rotated the one
of the complex numbers by the equivalent of the rotation of the other, and the
modulus of the result of that product was equivalent to the product of the indi-
vidual modulus’. Figure 5.7 illustrates what occurs when two complex numbers
are divided.

Studying Figure 5.7 we can see that the resultant angle is equivalent to subtract-
ing the angle of (1+ j ) which is 45◦ from the angle of (2+3 j ). Moreover, by taking
the difference between these two angles, this gives the angle between (2+3 j )
and (1+ j ).

The modulus of the result of the quotient is the same as quotient of the individ-
ual modulus’. Thus, we have

∣∣∣∣ a +b j

c +d j

∣∣∣∣=
∣∣a +b j

∣∣∣∣c +d j
∣∣

Im(z)

Re(z)

2+3 j

1+ j
5
2 + 1

2 j

Figure 5.7
Example 5.2.9:

Divide and express the result in the form of real + complex.

a +b j

c +d j

Solution:

a +b j

c +d j
= a +b j

c +d j
· c −d j

c −d j
multiply the numerator and
denomintator by the
conjugate of the denominator.

= ac −ad j +bc j −bd j 2

c2 − cd j + cd j −d 2 j 2 foil numerator and
denominator

= (ac +bd)+ (bc −ad) j

c2 +d 2 simplify and group real, and
complex values

= ac +bd

c2 +d 2 + bc −ad

c2 +d 2 j rewrite in the form of real +
complex.

Example 5.2.10:

In an ac circuit, the formula V = Z I relates the voltage V , to impedance
Z and current I . Use the formula to find the impedance in a circuit where
the voltage is given by 115+11 j , and current is 9+3 j .

Solution:

To begin, we first notice that we must solve the formula given for impedance
Z which is straight forward since we only need to divide both sides of the
equation by current I .

Z = V

I

Now, we substitute the values that we have for both voltage and current
and simplify.
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115+11 j

9+3 j
= 115+11 j

9+3 j
· 9−3 j

9−3 j

= 115(9)−115(3) j +11(9) j +11(−3) j 2

92 +32

= (1035+33)+ (−345+99) j

90

= 1068

90
+ −246

90
j

≈ 11.87−2.73 j

Most scientific calculators have the ability to perform operations on complex
numbers. In most cases the numbers are entered in the same way their pre-
sented on paper. However, since a complex number is defined by having both
a real component and an imaginary component, then parenthesis are needed
to denoted each number. This is especially true when subtracting, multiply-
ing, and dividing. Figure 5.8 shows the input and output of Ex. 5.2.10 using a
scientific calculator.

Figure 5.8
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5.3 Polar Form of Complex Numbers

Im(z)

Re(z)

z = 1+ j
(a,b) = (1,1)

45◦

a = 1

b = 1

0

Figure 5.9

5.3.1 Plotting a Complex Number

Up till this point all complex numbers plotted in the complex plane have been
done in the form that’s called rectangular form.The rectangular form of plot-
ting a complex number is, as you may have guessed from the previous section,
performed just as any point would be plotted in the Cartesian plane where x is
the real axis, and y is the imaginary axis. In Figure 5.9 where z = 1+ j is plot-
ted you’ll notice that along the vertical axis that j is not shown. The reason for
this is that j is implied, and that the only values that would be placed along the
vertical axis are the coefficients of j . In addition, a line from the origin is not
typically drawn unless the complex number is representing a vector. In Figure
5.9, the dashed line is placed to show the angle of rotation from the positive
real axis. Figure 5.10 shows several complex points plotted without all the ref-
erences to direction and such.

Im(z)

Re(z)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

1

2

3

4

−2+3 j

−1−2 j

3−3 j

−3+ j

1+2 j

5
2 +3 j

Figure 5.10

Im(z)

Re(z)

r =
|a+

b j |
(a,b) = a +b j

θ

b

a

Figure 5.11

5.3.2 Polar Form of a Complex Number

The rectangular form of plotting complex coordinates is not the only method
to plotting points in a plane. In Figure 5.11 the angle that a + bi makes with
the positive real axis is called the argument. As stated in the previous section,
the absolute value of a complex number is the distance it is from the origin and
is called the modulus. In instances where a complex number is treated as a
vector it’s still referred to as the magnitude. In either case, whether we refer to
the length as the magnitude, absolute value, norm, or modulus, the equation
to determine it is the same.

Absolute Value of a Complex Numbers

If a+b j is any complex number, then the distance it is from the origin is
called the absolute value of a complex number, and is denoted

∣∣a +b j
∣∣

with the value ∣∣a +b j
∣∣=√

a2 +b2

After studying Figure 5.11 we see that any complex number exhibits the same
properties that a real point does being plotted in the Cartesian plane which is
the rectangular form from which a triangle can be visualized or extracted. For
this reason, a few familiar relationships enable us to make use of trigonometric
functions. From our definitions of trigonometric functions, we see that

cosθ = a

r
, and sinθ = b

r
. Solving each of these for a and b respectively gives

a = r cosθ (5.1)

b = r sinθ (5.2)

In addition to the trigonometric expressions for the sides of the triangle, we
know that there are several ways to determine the angle θ; however, typically
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just recalling tangent is sufficient. Also, the length of the radius r is the same as
the absolute value of the complex number.

tanθ = b

a
(5.3)

r =
√

a2 +b2 (5.4)

Together, the first two equations, 5.1 and 5.2, substituted in for a and b in a+b j
and simplifying forms the following

a +b j = r cosθ+ i r sinθ = r (cosθ+ j sinθ)

The expression r (cosθ+ j sinθ) is called the polar form of a complex number,
and sometimes referred to as the trigonometric form of a complex number.
The expression r (cosθ+ j sinθ is often abreviated as r cis θ, or r θ. For r cis θ,
c is the abbreaviation for cosine, i is the imaginary unit, and s is the abbreviation
for sine. The abbreviation r θ is read “r at angle θ.”

Converting Complex numbers from Polar to Rectangular Form

A complex number written in one of the following polar forms

r (cosθ+ i sinθ) r θ r cis θ

has the rectangular coordinates a +b j , where

a = r cosθ and b = r sinθ

Im(z)

Re(z)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

1

2

3

4

0.7258+2.9109 j

Figure 5.12

Example 5.3.1:

Convert 3(cos76◦+ j sin76◦) to rectangular form, and locate it in the com-
plex plane.

Solution:

a = r cosθ

= 3cos76◦

= 0.7258

b = r sinθ

= 3sin76◦

= 2.9109

Thus, in rectangular form we have a + b j = 0.7258 + 2.9109 j . Plotting
complex numbers are often easier by converting to rectangular form first.
0.7258+2.9109 j is shown in Figure 5.12.
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Im(z)

Re(z)−5 −4 −3 −2 −1 0 1 2

−2

−1

1

2

3

4

−5
p

3

2
+ 5

2
j

Figure 5.13

Example 5.3.2:

Convert 5 150◦ to rectangular form, and locate it in the complex plane.

Solution:

a = r cosθ

= 5cos150◦

= −5
p

3

2

≈−4.33

b = r sinθ

= 5sin150◦

= 5

2

= 2.5

Thus, a+bi = −5
p

3

2
+5

2
j and is also plotted in the complex plane in Figure

5.15.

Converting Complex numbers from Rectangular Form to Polar Form

A complex number written in rectangular form as

a +b j

has the polar form coordinates in the following forms

r (cosθ+ j sinθ) r θ r cis θ

where

r =
√

a2 +b2 and θ = tan−1

(
b

a

)

Example 5.3.3:

Convert 3−4 j to polar form and represent it in each of the three forms.

Solution:
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First, begin by finding r , then determine the angle θ.

r =
√

a2 +b2

=
√

32 + (−4)2

=p
25

= 5

θ = tan−1 b

a

= tan−1 −4

3

≈−53.13◦

Thus 3−4 j is equivalent in polar form to 5(cos−53.13◦+ j sin−53.13◦), or
5 cis −53.13◦, or 5 −53.13◦. Note, the positive coterminal angle of 306.87◦
could also have been used.

Example 5.3.4:

The complex number V = 24.7− 66.3 j V represents the voltage in an ac
circuit. Express this in polar form.

Solution:

As in the previous example, begin by finding r , then determine the angle
θ.

r =
√

a2 +b2

=
√

24.72 + (−66.3)2

=p
70.75

θ = tan−1 b

a

= tan−1 −66.3

24.7

≈−69.6◦

Since V is in the fourth quadrant, then representing θ =−69.6◦ is okay as
it is; however, if we’d prefer to represent θ using positive angles, then the
positive coterminal angle is −69.6◦ + 360◦ = 290.4◦. V is shown in figure
5.14.

Thus in polar form we have V = 70.75 −69.6◦ = 70.75 290.4◦.

Im(z)

Re(z)−10 −5 0 5 10 15 20 25 30

−70

−60

−50

−40

−30

−20

−10

5

24.7−66.3 j

Figure 5.14
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5.4 Exponential Form of a Complex Number

There is another method for representing complex numbers that involves the
use of exponents and is called the exponential form of a complex number.

Exponential Form of a Complex Number

A complex number written in polar form can be represented in expo-
nential form as

z = r e jθ

where θ is in radians and e is the natural base.

While θ can be anything, all examples will restrict θ to 0 ≤ θ < 2π.

Example 5.4.1: – Polar to exponential form

Write the complex number 5(cos90◦+ j sin90◦) in exponential form.

Solution:

Since 5(cos90◦ + j sin90◦) is already in polar form where r = 5 and θ =
90◦. Then all thats needed is to express θ in radians as required for the
exponential form.

90◦ · π

180◦
= π

2

Thus 5(cos90◦+ j sin90◦) = 5e
π
2 j . Note, π2 j is the exponent in this expres-

sion.

Example 5.4.2: – Rectangular to exponential form

Express 3−4 j in expontial form.

Solution:

This example is in rectangular form where r and θ must be determined.

r =
√

a2 +b2

=
√

32 + (−4)2

=p
9+16

=p
25

= 5

and
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θ = tan−1 b

a

= tan−1 −4

3

≈−.93

=−.93+2π add 2π to get a result in the
domain 0 ≤ θ < 2π. This step
is not necessary.

= 5.35

Since we had to approximate θ by rounding off what was given by the cal-
culator then the entire conversion from rectangular to exponential form
(in this case) is an approximation as well. Thus we have,

3−4 j ≈ 5e5.35 j

Example 5.4.3: – Polar to exponential form

Express 15 135◦ in exponential form.

Solution:

Since 15 135◦ is an abbreviated form of the polar form, all that’s needed is
to convert 135◦ to radians.

135◦ · π

180◦
= 3π

4

Thus, 15 135◦ = 15e
3π
4 · j .

Im(z)

Re(z)−5 −4 −3 −2 −1 0 1 2
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= 5

θ

Figure 5.15

Example 5.4.4: – Rectangular to exponential form

Express −3−4 j in exponential form.

Solution:

This example is similar to Example 5.4.2 except the calculator will inter-
pret θ to be in quadrant 1 since it’s first operation will be to cancel out the
division of the two negatives. We must be aware of this and add the equiv-
alent of 180◦, or in our case π radians, to the calculators result since we
know that −3−4 j is in quadrant 3.

r =
√

a2 +b2

=
√

(−3)2 + (−4)2

=p
25

= 5

and
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θ = tan−1 b

a

= tan−1 −4

−3

≈ .93 This is the result from the
calculator, but π radians must
be added to get the correct
angle.

= .93+π
= 4.07

Thus, −3−4i ≈ 5e4.07i .

5.4.1 Multiplication and Division in Exponential Form

An advantage of using the exponential form of a complex number is that the
basic properties of exponents obey the laws of exponents introduced in section
1.3.1. Specifically, there are three properties of interest: multiplication, divi-
sion, and powers.

For convenience, these exponential properties are listed below:

an am = an+m (5.5)

an

am = an−m (5.6)(
an)m = anm (5.7)

(ab)n = anbn (5.8)

Given, or determined, two complex numbers in exponential form, say z1 =
r1eθ1 j and z2 = r2eθ2 j , then we can multiply or divide them using the properties
of exponents just described above. For example,

z1z2 =
(
z1 = r1eθ1 j

)(
z2 = r2eθ2 j

)
= r1r2e(θ1+θ2) j

and
z1

z2
= r1eθ1 j

r2eθ2 j

= r1

r2
e(θ1−θ2) j



164 CHAPTER 5. COMPLEX NUMBERS

Example 5.4.5: – Multiply in exponential form

Multiply 4eπ j and 2e
π
2 j .

Solution:

(
4eπ j

)(
2e

π
2 j

)
= 4(2)e

(
π+ π

2

)
j add the exponents

= 8e
3π
2 j

Example 5.4.6: – Divide in exponential form

Divide 4eπ j and 2e
π
2 j .

Solution:

4eπ j

2e
π
2 j

= 4

2
e

(
π− π

2

)
j subtract the exponents

= 2e
π
2 j



Appendix A

Direction - Headings and
Bearings

A.0.1 Heading

Many applications in technical mathematics involve vehicles, such as vessels
and aircraft that navigate with respect to cardinal direction, or cardinal points
which refer to north, south, east, and west. These cardinal directions are typi-
cally abreviated by N , S, E , and W .

A vehicles heading is the direction in which the nose is pointing. Headings are
usually referenced either by a magnetic compass, or by instruments that refer-
ence the lines of meridian (true north and south lines). In either case, both of
these types of instruments measure angles beginning off the north axis where a
positive angle is measured in the clockwise direction as shown in figure A.2.
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Figure A.1: Cardinal Rose
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Figure A.2: Heading

A vehicles heading is constantly changing due to either crosswinds or currents.
Thus a vehicles heading is not necessarily the direction the vehicle is travel-
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ing. Even if a vehicle maintains a specific heading its path of travel will not
be straight since the instruments reference a compass that’s directed north of
a sphere. For instance, if a plane flies with a heading due north and does not
change direction, then its heading will change from due north to due south
once it has crossed the north pole.

In math, the heading to a specific location is stated as the number of degrees
east or west of north or south. This means that the angles can be measured
in a positive direction either clockwise or counterclockwise of either the north
axis or the south axis from where the angle originates. See Figure A.4 for an
illustration.

S

N

EW

heading

θ

bearing

α

destination

Figure A.3: Heading and Bearing

Note:
Without any crosswind or current, then
heading and bearing would be the
same direction. In the physical world
this would almost never occur; how-
ever, in math (unless otherwise stated)
the two terms are interchangeable.
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35◦
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N 45◦W
NW 45◦

Figure A.4: Heading

A.0.2 Bearing

As stated before, heading is not necessarily the direction in which the vehicle is
moving usually because of crosswinds or currents. Bearing is the angle (clock-
wise) between the North axis and the direction to the destination. Bearings
are used to reference one point relative to another point where either of these
points can be a static location(s) or a vehicle(s). Figure A.5 illustrates the bear-
ing from one location with respect to another (either to or from).
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Figure A.5

In the above figure, the bearing for P to/from Q is θ, and the bearing for Q
to/from P is α.
With regard to the differences between heading and bearing, I find it easiest to
think of it this way. Regardless of the direction the vehicle is pointing (heading),
the bearing is ultimately the direction the vehicle is traveling.
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4-to-1 rule, 109

Absolute Error, 28
Accuracy, 23
adj, 103
adjacent angles, 53
algebraic expression, 37
alphanumeric, 22
altitude, 58, 71
ambiguous case (SSA), 133
angle, 51
angle of depression, 106
angle of elevation, 106
angle of reference, 103
angular velocity, 112
approximate numbers, 23
arccosine, 100
arclength, 67
arcsine, 100
arctangent, 100
arcus, 100
area of a quadrilateral, 62
area of a sector, 70
area of triangles, 58
argument, 157

base, 17
bearing, 166
binomial, 38

cardinal direction, 165
cardinal points, 165
Cartesian coordinate plane, 89
Cartesian coordinates, 95
center, 65
central angle, 67
centroid, 58
chord, 65
circumference, 65
coefficient, 38
complementary angles, 52
complex conjugate, 146
complex number, 145
complex number - absolute value, 157
complex number - exponential form, 161
complex number - polar form, 158
complex number- trigonometric form, 158

complex numbers, 149
complex plane, 148
cone, 74
constant, 37
corresponding, 53
corresponding segments, 53
coterminal angle, 89
Counting Numbers, 6
cube, 72
cylinder, 71

degree, 38
degree measure, 86
Denominant numbers, 11
denominator, 10
diameter, 65, 73
directed line segment, 115

element, 71
Engineering Notation, 32
equilateral triangle, 56
Euclidean plane, 89
exact numbers, 23
Exact value, 28
Exponents, 17

Fraction, 9

ground speed, 107

half line, 51
heading, 165
height, 71
Hero’s formula, 58
Heron’s formula, 58
hexagon, 61
hexagonal prism, 72
hyp, 103
hypotenuse, 103

imaginary component, 145
imaginary unit, 142
initial point, 115
initial side, 86
integers, 6
International System of Units, 32
inverse cosine, 100
inverse sine, 100
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inverse tangent, 100
Irrational numbers, 7
isosceles triangle, 56

kite, 61

lateral faces, 74
lateral surface area, 71
Law of cosines, 136
Law of sines, 132
legs, 103
like terms, 38
line, 51, 65
linear velocity, 112

magnitude, 115
median, 58
minutes, 86
modulus, 153, 157
monomial, 38
multinomial, 38

Natural numbers, 6
negative angle, 86
normal, 51
Number line, 7
numerator, 10

oblique cylinder, 71
oblique triangle, 132
Operations with zero, 15
opp, 103
Order of Operations, 13
Ordinary notation, 31
Origin, 7

parallel, 51
parallelogram, 61
parallelogram method, 117
pentagon, 55, 61
percent error, 28
perimeter, 57, 62
perpendicular, 51
polygon, 55
polygon method, 116
polynomial, 38
positive angle, 86
Precision, 23
prism, 72
Properties of Exponents, 18
Properties of Real Numbers, 11
Properties of Roots, 21
proportion, 77
proportional, 77
pure imaginary number, 143, 145
Pythagorean Theorem, 59

quadrants, 89
quadratic formula, 147
quadrilateral, 55, 61

radian measure, 86
radians, 54, 88
Radical, 20
radicand, 20
radius, 65, 73
radius vector, 91
Rational numbers, 6
rational numbers, 6
rationalizing, 92
Ray, 51
real component, 145
Real numbers, 7
reciprocal identities, 97
rectangle, 61
rectangular form, 145, 157
rectangular prism, 72
Relative Error, 28
resultant, 116
resultant vector, 116
rhombus, 61
right circular cone, 74
right circular cylinder, 71
right triangle, 56
Root, 20
roots, 147

scalar, 115
scalar multiple, 118
scalene triangle, 56
Scientific notation, 31
seconds, 86
sector, 65
Set Symbols, 8, 12
Set-builder notation, 6
sets, 6
Significant digits, 23
similar angles, 53
similar figures, 81
similar triangles, 79
simplified, 39
special angles, 98
sphere, 73
square, 61
standard position, 89
subscripts, 37
supplementary angles, 52
surface area of a sphere, 74
surface area of cones, 74
surface area of cylinder, 71
surface area of frustrum, 76
surface area of pyramids, 75
symmetric, 94
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symmetry, 94

tangent, 65
term, 37
terminal point, 115
terminal side, 86
total surface area, 71
transversal, 53
trapezoid, 61
triangle, 55, 56
triangular prism, 72
trinomial, 38

unit circle, 95

variable, 37
vector, 115
vector addition, 121
vertex, 51, 74, 86
vertical angles, 53
volume, 71
volume of cylinder, 71
volume of frustrum, 76
volume of sphere, 74, 75
volumes of similar figures, 84

whole numbers, 6

zeros, 147
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